Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data
- URL: http://arxiv.org/abs/2006.12311v1
- Date: Mon, 22 Jun 2020 14:49:33 GMT
- Title: Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data
- Authors: Lingxiao Wang, Zhuoran Yang, Zhaoran Wang
- Abstract summary: We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
- Score: 135.64775986546505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Empowered by expressive function approximators such as neural networks, deep
reinforcement learning (DRL) achieves tremendous empirical successes. However,
learning expressive function approximators requires collecting a large dataset
(interventional data) by interacting with the environment. Such a lack of
sample efficiency prohibits the application of DRL to critical scenarios, e.g.,
autonomous driving and personalized medicine, since trial and error in the
online setting is often unsafe and even unethical. In this paper, we study how
to incorporate the dataset (observational data) collected offline, which is
often abundantly available in practice, to improve the sample efficiency in the
online setting. To incorporate the possibly confounded observational data, we
propose the deconfounded optimistic value iteration (DOVI) algorithm, which
incorporates the confounded observational data in a provably efficient manner.
More specifically, DOVI explicitly adjusts for the confounding bias in the
observational data, where the confounders are partially observed or unobserved.
In both cases, such adjustments allow us to construct the bonus based on a
notion of information gain, which takes into account the amount of information
acquired from the offline setting. In particular, we prove that the regret of
DOVI is smaller than the optimal regret achievable in the pure online setting
by a multiplicative factor, which decreases towards zero when the confounded
observational data are more informative upon the adjustments. Our algorithm and
analysis serve as a step towards causal reinforcement learning.
Related papers
- On Counterfactual Data Augmentation Under Confounding [30.76982059341284]
Counterfactual data augmentation has emerged as a method to mitigate confounding biases in the training data.
These biases arise due to various observed and unobserved confounding variables in the data generation process.
We show how our simple augmentation method helps existing state-of-the-art methods achieve good results.
arXiv Detail & Related papers (2023-05-29T16:20:23Z) - Reinforcement Learning from Passive Data via Latent Intentions [86.4969514480008]
We show that passive data can still be used to learn features that accelerate downstream RL.
Our approach learns from passive data by modeling intentions.
Our experiments demonstrate the ability to learn from many forms of passive data, including cross-embodiment video data and YouTube videos.
arXiv Detail & Related papers (2023-04-10T17:59:05Z) - Causal Deep Reinforcement Learning Using Observational Data [11.790171301328158]
We propose two deconfounding methods in deep reinforcement learning (DRL)
The methods first calculate the importance degree of different samples based on the causal inference technique, and then adjust the impact of different samples on the loss function.
We prove the effectiveness of our deconfounding methods and validate them experimentally.
arXiv Detail & Related papers (2022-11-28T14:34:39Z) - The Challenges of Continuous Self-Supervised Learning [40.941767578622745]
Self-supervised learning (SSL) aims to eliminate one of the major bottlenecks in representation learning - the need for human annotations.
We show that a direct application of current methods to such continuous setup is inefficient both computationally and in the amount of data required.
We propose the use of replay buffers as an approach to alleviate the issues of inefficiency and temporal correlations.
arXiv Detail & Related papers (2022-03-23T20:05:06Z) - The Challenges of Exploration for Offline Reinforcement Learning [8.484491887821473]
We study the two processes of reinforcement learning: collecting informative experience and inferring optimal behaviour.
The task-agnostic setting for data collection, where the task is not known a priori, is of particular interest.
We use this decoupled framework to strengthen intuitions about exploration and the data prerequisites for effective offline RL.
arXiv Detail & Related papers (2022-01-27T23:59:56Z) - Understanding Memorization from the Perspective of Optimization via
Efficient Influence Estimation [54.899751055620904]
We study the phenomenon of memorization with turn-over dropout, an efficient method to estimate influence and memorization, for data with true labels (real data) and data with random labels (random data)
Our main findings are: (i) For both real data and random data, the optimization of easy examples (e.g., real data) and difficult examples (e.g., random data) are conducted by the network simultaneously, with easy ones at a higher speed; (ii) For real data, a correct difficult example in the training dataset is more informative than an easy one.
arXiv Detail & Related papers (2021-12-16T11:34:23Z) - On Covariate Shift of Latent Confounders in Imitation and Reinforcement
Learning [69.48387059607387]
We consider the problem of using expert data with unobserved confounders for imitation and reinforcement learning.
We analyze the limitations of learning from confounded expert data with and without external reward.
We validate our claims empirically on challenging assistive healthcare and recommender system simulation tasks.
arXiv Detail & Related papers (2021-10-13T07:31:31Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.