Aligning Language Models with Observational Data: Opportunities and Risks from a Causal Perspective
- URL: http://arxiv.org/abs/2506.00152v1
- Date: Fri, 30 May 2025 18:44:09 GMT
- Title: Aligning Language Models with Observational Data: Opportunities and Risks from a Causal Perspective
- Authors: Erfan Loghmani,
- Abstract summary: We study the challenges and opportunities of fine-tuning large language models using observational data.<n>We show that while observational outcomes can provide valuable supervision, directly fine-tuning models on such data can lead them to learn spurious correlations.<n>We propose DeconfoundLM, a method that explicitly removes the effect of known confounders from reward signals.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models are being widely used across industries to generate content that contributes directly to key performance metrics, such as conversion rates. Pretrained models, however, often fall short when it comes to aligning with human preferences or optimizing for business objectives. As a result, fine-tuning with good-quality labeled data is essential to guide models to generate content that achieves better results. Controlled experiments, like A/B tests, can provide such data, but they are often expensive and come with significant engineering and logistical challenges. Meanwhile, companies have access to a vast amount of historical (observational) data that remains underutilized. In this work, we study the challenges and opportunities of fine-tuning LLMs using observational data. We show that while observational outcomes can provide valuable supervision, directly fine-tuning models on such data can lead them to learn spurious correlations. We present empirical evidence of this issue using various real-world datasets and propose DeconfoundLM, a method that explicitly removes the effect of known confounders from reward signals. Using simulation experiments, we demonstrate that DeconfoundLM improves the recovery of causal relationships and mitigates failure modes found in fine-tuning methods that ignore or naively incorporate confounding variables. Our findings highlight that while observational data presents risks, with the right causal corrections, it can be a powerful source of signal for LLM alignment. Please refer to the project page for code and related resources.
Related papers
- Privacy-Preserving Methods for Bug Severity Prediction [0.0]
We investigate method-level bug severity prediction using source code metrics and Large Language Models.<n>We compare the performance of models trained using centralized learning, federated learning, and synthetic data generation.<n>Our finding highlights the potential of privacy-preserving approaches to enable effective bug severity prediction in industrial context.
arXiv Detail & Related papers (2025-06-28T04:40:51Z) - Hey, That's My Data! Label-Only Dataset Inference in Large Language Models [63.35066172530291]
CatShift is a label-only dataset-inference framework.<n>It capitalizes on catastrophic forgetting: the tendency of an LLM to overwrite previously learned knowledge when exposed to new data.
arXiv Detail & Related papers (2025-06-06T13:02:59Z) - Preference Leakage: A Contamination Problem in LLM-as-a-judge [69.96778498636071]
Large Language Models (LLMs) as judges and LLM-based data synthesis have emerged as two fundamental LLM-driven data annotation methods.<n>In this work, we expose preference leakage, a contamination problem in LLM-as-a-judge caused by the relatedness between the synthetic data generators and LLM-based evaluators.
arXiv Detail & Related papers (2025-02-03T17:13:03Z) - Mitigating Forgetting in LLM Fine-Tuning via Low-Perplexity Token Learning [61.99353167168545]
We show that fine-tuning with LLM-generated data improves target task performance and reduces non-target task degradation.<n>This is the first work to provide an empirical explanation based on token perplexity reduction to mitigate catastrophic forgetting in LLMs after fine-tuning.
arXiv Detail & Related papers (2025-01-24T08:18:56Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Enhancing Unsupervised Sentence Embeddings via Knowledge-Driven Data Augmentation and Gaussian-Decayed Contrastive Learning [37.54523122932728]
We propose a pipeline-based data augmentation method via large language models (LLMs)<n>We introduce the Gaussian-decayed gradient-assisted Contrastive Sentence Embedding (GCSE) model to enhance unsupervised sentence embeddings.<n> Experimental results show that our approach achieves state-of-the-art performance in semantic textual similarity tasks.
arXiv Detail & Related papers (2024-09-19T16:29:58Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Discovery of the Hidden World with Large Language Models [95.58823685009727]
This paper presents Causal representatiOn AssistanT (COAT) that introduces large language models (LLMs) to bridge the gap.
LLMs are trained on massive observations of the world and have demonstrated great capability in extracting key information from unstructured data.
COAT also adopts CDs to find causal relations among the identified variables as well as to provide feedback to LLMs to iteratively refine the proposed factors.
arXiv Detail & Related papers (2024-02-06T12:18:54Z) - An Investigation of Smart Contract for Collaborative Machine Learning
Model Training [3.5679973993372642]
Collaborative machine learning (CML) has penetrated various fields in the era of big data.
As the training of ML models requires a massive amount of good quality data, it is necessary to eliminate concerns about data privacy.
Based on blockchain, smart contracts enable automatic execution of data preserving and validation.
arXiv Detail & Related papers (2022-09-12T04:25:01Z) - Causal Reinforcement Learning using Observational and Interventional
Data [14.856472820492364]
Learning efficiently a causal model of the environment is a key challenge of model RL agents operating in POMDPs.
We consider a scenario where the learning agent has the ability to collect online experiences through direct interactions with the environment.
We then ask the following questions: can the online and offline experiences be safely combined for learning a causal model.
arXiv Detail & Related papers (2021-06-28T06:58:20Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.