Generative Sparse Detection Networks for 3D Single-shot Object Detection
- URL: http://arxiv.org/abs/2006.12356v1
- Date: Mon, 22 Jun 2020 15:54:24 GMT
- Title: Generative Sparse Detection Networks for 3D Single-shot Object Detection
- Authors: JunYoung Gwak, Christopher Choy, Silvio Savarese
- Abstract summary: 3D object detection has been widely studied due to its potential applicability to many promising areas such as robotics and augmented reality.
Yet, the sparse nature of the 3D data poses unique challenges to this task.
We propose Generative Sparse Detection Network (GSDN), a fully-convolutional single-shot sparse detection network.
- Score: 43.91336826079574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D object detection has been widely studied due to its potential
applicability to many promising areas such as robotics and augmented reality.
Yet, the sparse nature of the 3D data poses unique challenges to this task.
Most notably, the observable surface of the 3D point clouds is disjoint from
the center of the instance to ground the bounding box prediction on. To this
end, we propose Generative Sparse Detection Network (GSDN), a
fully-convolutional single-shot sparse detection network that efficiently
generates the support for object proposals. The key component of our model is a
generative sparse tensor decoder, which uses a series of transposed
convolutions and pruning layers to expand the support of sparse tensors while
discarding unlikely object centers to maintain minimal runtime and memory
footprint. GSDN can process unprecedentedly large-scale inputs with a single
fully-convolutional feed-forward pass, thus does not require the heuristic
post-processing stage that stitches results from sliding windows as other
previous methods have. We validate our approach on three 3D indoor datasets
including the large-scale 3D indoor reconstruction dataset where our method
outperforms the state-of-the-art methods by a relative improvement of 7.14%
while being 3.78 times faster than the best prior work.
Related papers
- DM3D: Distortion-Minimized Weight Pruning for Lossless 3D Object Detection [42.07920565812081]
We propose a novel post-training weight pruning scheme for 3D object detection.
It determines redundant parameters in the pretrained model that lead to minimal distortion in both locality and confidence.
This framework aims to minimize detection distortion of network output to maximally maintain detection precision.
arXiv Detail & Related papers (2024-07-02T09:33:32Z) - 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTection is a state-of-the-art method for 3D object detection from single images.
We fine-tune a diffusion model to perform novel view synthesis conditioned on a single image.
We further train the model on target data with detection supervision.
arXiv Detail & Related papers (2023-11-07T23:46:41Z) - HEDNet: A Hierarchical Encoder-Decoder Network for 3D Object Detection
in Point Clouds [19.1921315424192]
3D object detection in point clouds is important for autonomous driving systems.
A primary challenge in 3D object detection stems from the sparse distribution of points within the 3D scene.
We propose HEDNet, a hierarchical encoder-decoder network for 3D object detection.
arXiv Detail & Related papers (2023-10-31T07:32:08Z) - 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
We propose an efficient feature pruning strategy for 3D small object detection.
We present a multi-level 3D detector named DSPDet3D which benefits from high spatial resolution.
It takes less than 2s to directly process a whole building consisting of more than 4500k points while detecting out almost all objects.
arXiv Detail & Related papers (2023-05-05T17:57:04Z) - Anchor-free 3D Single Stage Detector with Mask-Guided Attention for
Point Cloud [79.39041453836793]
We develop a novel single-stage 3D detector for point clouds in an anchor-free manner.
We overcome this by converting the voxel-based sparse 3D feature volumes into the sparse 2D feature maps.
We propose an IoU-based detection confidence re-calibration scheme to improve the correlation between the detection confidence score and the accuracy of the bounding box regression.
arXiv Detail & Related papers (2021-08-08T13:42:13Z) - Exploring Deep 3D Spatial Encodings for Large-Scale 3D Scene
Understanding [19.134536179555102]
We propose an alternative approach to overcome the limitations of CNN based approaches by encoding the spatial features of raw 3D point clouds into undirected graph models.
The proposed method achieves on par state-of-the-art accuracy with improved training time and model stability thus indicating strong potential for further research.
arXiv Detail & Related papers (2020-11-29T12:56:19Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
Estimating 3D orientation and translation of objects is essential for infrastructure-less autonomous navigation and driving.
We propose a novel 3D object detection method, named SMOKE, that combines a single keypoint estimate with regressed 3D variables.
Despite of its structural simplicity, our proposed SMOKE network outperforms all existing monocular 3D detection methods on the KITTI dataset.
arXiv Detail & Related papers (2020-02-24T08:15:36Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
We propose SESS, a self-ensembling semi-supervised 3D object detection framework. Specifically, we design a thorough perturbation scheme to enhance generalization of the network on unlabeled and new unseen data.
Our SESS achieves competitive performance compared to the state-of-the-art fully-supervised method by using only 50% labeled data.
arXiv Detail & Related papers (2019-12-26T08:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.