CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds
- URL: http://arxiv.org/abs/2210.04264v1
- Date: Sun, 9 Oct 2022 13:38:48 GMT
- Title: CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds
- Authors: Haiyang Wang, Lihe Ding, Shaocong Dong, Shaoshuai Shi, Aoxue Li,
Jianan Li, Zhenguo Li, Liwei Wang
- Abstract summary: We present a novel two-stage fully sparse convolutional 3D object detection framework, named CAGroup3D.
Our proposed method first generates some high-quality 3D proposals by leveraging the class-aware local group strategy on the object surface voxels.
To recover the features of missed voxels due to incorrect voxel-wise segmentation, we build a fully sparse convolutional RoI pooling module.
- Score: 55.44204039410225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel two-stage fully sparse convolutional 3D object detection
framework, named CAGroup3D. Our proposed method first generates some
high-quality 3D proposals by leveraging the class-aware local group strategy on
the object surface voxels with the same semantic predictions, which considers
semantic consistency and diverse locality abandoned in previous bottom-up
approaches. Then, to recover the features of missed voxels due to incorrect
voxel-wise segmentation, we build a fully sparse convolutional RoI pooling
module to directly aggregate fine-grained spatial information from backbone for
further proposal refinement. It is memory-and-computation efficient and can
better encode the geometry-specific features of each 3D proposal. Our model
achieves state-of-the-art 3D detection performance with remarkable gains of
+\textit{3.6\%} on ScanNet V2 and +\textit{2.6}\% on SUN RGB-D in term of
mAP@0.25. Code will be available at https://github.com/Haiyang-W/CAGroup3D.
Related papers
- Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - 3D Cascade RCNN: High Quality Object Detection in Point Clouds [122.42455210196262]
We present 3D Cascade RCNN, which allocates multiple detectors based on the voxelized point clouds in a cascade paradigm.
We validate the superiority of our proposed 3D Cascade RCNN, when comparing to state-of-the-art 3D object detection techniques.
arXiv Detail & Related papers (2022-11-15T15:58:36Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
We propose the RBGNet framework, a voting-based 3D detector for accurate 3D object detection from point clouds.
We propose a ray-based feature grouping module, which aggregates the point-wise features on object surfaces using a group of determined rays.
Our model achieves state-of-the-art 3D detection performance on ScanNet V2 and SUN RGB-D with remarkable performance gains.
arXiv Detail & Related papers (2022-04-05T14:42:57Z) - FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection [3.330229314824913]
We present FCAF3D - a first-in-class fully convolutional anchor-free indoor 3D object detection method.
It is a simple yet effective method that uses a voxel representation of a point cloud and processes voxels with sparse convolutions.
It can handle large-scale scenes with minimal runtime through a single fully convolutional feed-forward pass.
arXiv Detail & Related papers (2021-12-01T07:28:52Z) - 3D Object Detection Combining Semantic and Geometric Features from Point
Clouds [19.127930862527666]
We propose a novel end-to-end two-stage 3D object detector named SGNet for point clouds scenes.
The VTPM is a Voxel-Point-Based Module that finally implements 3D object detection in point space.
As of September 19, 2021, for KITTI dataset, SGNet ranked 1st in 3D and BEV detection on cyclists with easy difficulty level, and 2nd in the 3D detection of moderate cyclists.
arXiv Detail & Related papers (2021-10-10T04:43:27Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - Stereo RGB and Deeper LIDAR Based Network for 3D Object Detection [40.34710686994996]
3D object detection has become an emerging task in autonomous driving scenarios.
Previous works process 3D point clouds using either projection-based or voxel-based models.
We propose the Stereo RGB and Deeper LIDAR framework which can utilize semantic and spatial information simultaneously.
arXiv Detail & Related papers (2020-06-09T11:19:24Z) - ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object
Detection [69.68263074432224]
We present a novel framework named ZoomNet for stereo imagery-based 3D detection.
The pipeline of ZoomNet begins with an ordinary 2D object detection model which is used to obtain pairs of left-right bounding boxes.
To further exploit the abundant texture cues in RGB images for more accurate disparity estimation, we introduce a conceptually straight-forward module -- adaptive zooming.
arXiv Detail & Related papers (2020-03-01T17:18:08Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
Estimating 3D orientation and translation of objects is essential for infrastructure-less autonomous navigation and driving.
We propose a novel 3D object detection method, named SMOKE, that combines a single keypoint estimate with regressed 3D variables.
Despite of its structural simplicity, our proposed SMOKE network outperforms all existing monocular 3D detection methods on the KITTI dataset.
arXiv Detail & Related papers (2020-02-24T08:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.