論文の概要: A Multiscale Graph Convolutional Network Using Hierarchical Clustering
- arxiv url: http://arxiv.org/abs/2006.12542v1
- Date: Mon, 22 Jun 2020 18:13:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 05:12:41.621379
- Title: A Multiscale Graph Convolutional Network Using Hierarchical Clustering
- Title(参考訳): 階層クラスタリングを用いた多スケールグラフ畳み込みネットワーク
- Authors: Alex Lipov and Pietro Li\`o
- Abstract要約: マルチスケールの分解によってこの情報を活用する新しいアーキテクチャを探索する。
デンドログラムは、Girvan-Newman階層的クラスタリングアルゴリズムによって生成される。
アーキテクチャはベンチマーク引用ネットワーク上でテストされ、競合性能を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The information contained in hierarchical topology, intrinsic to many
networks, is currently underutilised. A novel architecture is explored which
exploits this information through a multiscale decomposition. A dendrogram is
produced by a Girvan-Newman hierarchical clustering algorithm. It is segmented
and fed through graph convolutional layers, allowing the architecture to learn
multiple scale latent space representations of the network, from fine to coarse
grained. The architecture is tested on a benchmark citation network,
demonstrating competitive performance. Given the abundance of hierarchical
networks, possible applications include quantum molecular property prediction,
protein interface prediction and multiscale computational substrates for
partial differential equations.
- Abstract(参考訳): 階層トポロジに含まれる情報は、多くのネットワークに固有のもので、現在未使用である。
マルチスケールの分解によってこの情報を活用する新しいアーキテクチャを探索する。
dendrogramはgillvan-newman階層クラスタリングアルゴリズムによって生成される。
グラフ畳み込み層を通じてセグメント化され、アーキテクチャはネットワークの複数のスケールの潜在空間表現を、きめ細かいものから粗いものまで学習することができる。
アーキテクチャはベンチマーク引用ネットワーク上でテストされ、競合性能を示す。
階層ネットワークが豊富であることから、量子分子特性予測、タンパク質界面予測、偏微分方程式のマルチスケール計算基板など、考えられる応用が考えられる。
関連論文リスト
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - Convolutional Learning on Multigraphs [153.20329791008095]
我々は、多グラフ上の畳み込み情報処理を開発し、畳み込み多グラフニューラルネットワーク(MGNN)を導入する。
情報拡散の複雑なダイナミクスを多グラフのエッジのクラス間で捉えるために、畳み込み信号処理モデルを定式化する。
我々は,計算複雑性を低減するため,サンプリング手順を含むマルチグラフ学習アーキテクチャを開発した。
導入されたアーキテクチャは、最適な無線リソース割り当てとヘイトスピーチローカライゼーションタスクに適用され、従来のグラフニューラルネットワークよりも優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2022-09-23T00:33:04Z) - Semi-Supervised Deep Learning for Multiplex Networks [20.671777884219555]
多重ネットワークは複雑なグラフ構造であり、エンティティの集合が複数のタイプの関係によって相互に接続される。
マルチプレックスネットワーク上の構造認識表現学習のための,新しい半教師付き手法を提案する。
論文 参考訳(メタデータ) (2021-10-05T13:37:43Z) - Subspace Clustering Based Analysis of Neural Networks [7.451579925406617]
入力セット上でトレーニングされたニューラルネットワーク層の潜在構造から親和性グラフを学習する。
次に、コミュニティ検出のツールを使用して、入力に存在する構造を定量化します。
ネットワークの最終畳み込み層の学習親和性グラフを解析し、入力の局所的近傍がネットワークによる分類にどのように影響するかを示す。
論文 参考訳(メタデータ) (2021-07-02T22:46:40Z) - RAN-GNNs: breaking the capacity limits of graph neural networks [43.66682619000099]
グラフニューラルネットワークは、グラフ上で定義されたデータの学習と分析に対処する問題の中心となっている。
最近の研究では、複数の近隣サイズを同時に考慮し、適応的にそれらを調整する必要があるためです。
ランダムに配線されたアーキテクチャを用いることで、ネットワークの容量を増大させ、よりリッチな表現を得ることができることを示す。
論文 参考訳(メタデータ) (2021-03-29T12:34:36Z) - Multi-Level Attention Pooling for Graph Neural Networks: Unifying Graph
Representations with Multiple Localities [4.142375560633827]
グラフニューラルネットワーク(GNN)は、グラフ構造データのベクトル表現を学ぶために広く使用されている。
潜在的な原因は、深いGNNモデルは、多くのメッセージ通過ステップを通じてノードのローカル情報を失う傾向にある。
このいわゆる過度な問題を解くために,マルチレベルアテンションプールアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-03-02T05:58:12Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
動的グラフネットワーク(DG-Net)は完全な有向非巡回グラフであり、ノードは畳み込みブロックを表し、エッジは接続経路を表す。
ネットワークの同じパスを使用する代わりに、DG-Netは各ノードの機能を動的に集約する。
論文 参考訳(メタデータ) (2020-10-02T16:50:26Z) - Graph Neural Networks with Composite Kernels [60.81504431653264]
カーネル重み付けの観点からノード集約を再解釈する。
本稿では,アグリゲーション方式における特徴類似性を考慮したフレームワークを提案する。
特徴空間における特徴類似性をエンコードするために,元の隣り合うカーネルと学習可能なカーネルの合成として特徴集約を提案する。
論文 参考訳(メタデータ) (2020-05-16T04:44:29Z) - Progressive Graph Convolutional Networks for Semi-Supervised Node
Classification [97.14064057840089]
グラフ畳み込みネットワークは、半教師付きノード分類のようなグラフベースのタスクに対処することに成功した。
本稿では,コンパクトかつタスク固有のグラフ畳み込みネットワークを自動構築する手法を提案する。
論文 参考訳(メタデータ) (2020-03-27T08:32:16Z) - Shift Aggregate Extract Networks [3.3263205689999453]
大規模グラフの効率的な表現を学習するために,階層分解に基づくアーキテクチャを導入する。
我々のフレームワークは、カーネルメソッドで使用される古典的なR分解を拡張し、ネストした部分関係を可能にする。
我々は,我々のアプローチが,大規模ソーシャルネットワークデータセット上で現在最先端のグラフ分類手法より優れていることを実証的に示す。
論文 参考訳(メタデータ) (2017-03-16T09:52:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。