A Multiscale Graph Convolutional Network Using Hierarchical Clustering
- URL: http://arxiv.org/abs/2006.12542v1
- Date: Mon, 22 Jun 2020 18:13:03 GMT
- Title: A Multiscale Graph Convolutional Network Using Hierarchical Clustering
- Authors: Alex Lipov and Pietro Li\`o
- Abstract summary: A novel architecture is explored which exploits this information through a multiscale decomposition.
A dendrogram is produced by a Girvan-Newman hierarchical clustering algorithm.
The architecture is tested on a benchmark citation network, demonstrating competitive performance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The information contained in hierarchical topology, intrinsic to many
networks, is currently underutilised. A novel architecture is explored which
exploits this information through a multiscale decomposition. A dendrogram is
produced by a Girvan-Newman hierarchical clustering algorithm. It is segmented
and fed through graph convolutional layers, allowing the architecture to learn
multiple scale latent space representations of the network, from fine to coarse
grained. The architecture is tested on a benchmark citation network,
demonstrating competitive performance. Given the abundance of hierarchical
networks, possible applications include quantum molecular property prediction,
protein interface prediction and multiscale computational substrates for
partial differential equations.
Related papers
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Convolutional Learning on Multigraphs [153.20329791008095]
We develop convolutional information processing on multigraphs and introduce convolutional multigraph neural networks (MGNNs)
To capture the complex dynamics of information diffusion within and across each of the multigraph's classes of edges, we formalize a convolutional signal processing model.
We develop a multigraph learning architecture, including a sampling procedure to reduce computational complexity.
The introduced architecture is applied towards optimal wireless resource allocation and a hate speech localization task, offering improved performance over traditional graph neural networks.
arXiv Detail & Related papers (2022-09-23T00:33:04Z) - Semi-Supervised Deep Learning for Multiplex Networks [20.671777884219555]
Multiplex networks are complex graph structures in which a set of entities are connected to each other via multiple types of relations.
We present a novel semi-supervised approach for structure-aware representation learning on multiplex networks.
arXiv Detail & Related papers (2021-10-05T13:37:43Z) - Subspace Clustering Based Analysis of Neural Networks [7.451579925406617]
We learn affinity graphs from the latent structure of a given neural network layer trained over a set of inputs.
We then use tools from Community Detection to quantify structures present in the input.
We analyze the learned affinity graphs of the final convolutional layer of the network and demonstrate how an input's local neighbourhood affects its classification by the network.
arXiv Detail & Related papers (2021-07-02T22:46:40Z) - RAN-GNNs: breaking the capacity limits of graph neural networks [43.66682619000099]
Graph neural networks have become a staple in problems addressing learning and analysis of data defined over graphs.
Recent works attribute this to the need to consider multiple neighborhood sizes at the same time and adaptively tune them.
We show that employing a randomly-wired architecture can be a more effective way to increase the capacity of the network and obtain richer representations.
arXiv Detail & Related papers (2021-03-29T12:34:36Z) - Multi-Level Attention Pooling for Graph Neural Networks: Unifying Graph
Representations with Multiple Localities [4.142375560633827]
Graph neural networks (GNNs) have been widely used to learn vector representation of graph-structured data.
A potential cause is that deep GNN models tend to lose the nodes' local information through many message passing steps.
We propose a multi-level attention pooling architecture to solve this so-called oversmoothing problem.
arXiv Detail & Related papers (2021-03-02T05:58:12Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
Dynamic Graph Network (DG-Net) is a complete directed acyclic graph, where the nodes represent convolutional blocks and the edges represent connection paths.
Instead of using the same path of the network, DG-Net aggregates features dynamically in each node, which allows the network to have more representation ability.
arXiv Detail & Related papers (2020-10-02T16:50:26Z) - Graph Neural Networks with Composite Kernels [60.81504431653264]
We re-interpret node aggregation from the perspective of kernel weighting.
We present a framework to consider feature similarity in an aggregation scheme.
We propose feature aggregation as the composition of the original neighbor-based kernel and a learnable kernel to encode feature similarities in a feature space.
arXiv Detail & Related papers (2020-05-16T04:44:29Z) - Progressive Graph Convolutional Networks for Semi-Supervised Node
Classification [97.14064057840089]
Graph convolutional networks have been successful in addressing graph-based tasks such as semi-supervised node classification.
We propose a method to automatically build compact and task-specific graph convolutional networks.
arXiv Detail & Related papers (2020-03-27T08:32:16Z) - Shift Aggregate Extract Networks [3.3263205689999453]
We introduce an architecture based on deep hierarchical decompositions to learn effective representations of large graphs.
Our framework extends classic R-decompositions used in kernel methods, enabling nested part-of-part relations.
We show empirically that our approach is able to outperform current state-of-the-art graph classification methods on large social network datasets.
arXiv Detail & Related papers (2017-03-16T09:52:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.