MSGCN: Multiplex Spatial Graph Convolution Network for Interlayer Link Weight Prediction
- URL: http://arxiv.org/abs/2504.17749v1
- Date: Thu, 24 Apr 2025 17:08:16 GMT
- Title: MSGCN: Multiplex Spatial Graph Convolution Network for Interlayer Link Weight Prediction
- Authors: Steven E. Wilson, Sina Khanmohammadi,
- Abstract summary: Link weight prediction has received less emphasis due to its increased complexity compared to binary link classification.<n>We propose a new method named Multiplex Spatial Graph Convolution Network (MSGCN), which spatially embeds information across multiple layers to predict interlayer link weights.<n>The MSGCN model generalizes spatial graph convolution to multiplex networks and captures the geometric structure of nodes across multiple layers.
- Score: 0.27624021966289597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have been widely used for various learning tasks, ranging from node classification to link prediction. They have demonstrated excellent performance in multiple domains involving graph-structured data. However, an important category of learning tasks, namely link weight prediction, has received less emphasis due to its increased complexity compared to binary link classification. Link weight prediction becomes even more challenging when considering multilayer networks, where nodes can be interconnected across multiple layers. To address these challenges, we propose a new method named Multiplex Spatial Graph Convolution Network (MSGCN), which spatially embeds information across multiple layers to predict interlayer link weights. The MSGCN model generalizes spatial graph convolution to multiplex networks and captures the geometric structure of nodes across multiple layers. Extensive experiments using data with known interlayer link information show that the MSGCN model has robust, accurate, and generalizable link weight prediction performance across a wide variety of multiplex network structures.
Related papers
- CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
We propose a novel CNN2GNN framework to unify CNN and GNN together via distillation.
The performance of distilled boosted'' two-layer GNN on Mini-ImageNet is much higher than CNN containing dozens of layers such as ResNet152.
arXiv Detail & Related papers (2024-04-23T08:19:08Z) - BLIS-Net: Classifying and Analyzing Signals on Graphs [20.345611294709244]
Graph neural networks (GNNs) have emerged as a powerful tool for tasks such as node classification and graph classification.
We introduce the BLIS-Net (Bi-Lipschitz Scattering Net), a novel GNN that builds on the previously introduced geometric scattering transform.
We show that BLIS-Net achieves superior performance on both synthetic and real-world data sets based on traffic flow and fMRI data.
arXiv Detail & Related papers (2023-10-26T17:03:14Z) - Network Intrusion Detection with Edge-Directed Graph Multi-Head Attention Networks [13.446986347747325]
This paper proposes novel Edge-Directed Graph Multi-Head Attention Networks (EDGMAT) for network intrusion detection.
The proposed EDGMAT model introduces a multi-head attention mechanism into the intrusion detection model. Additional weight learning is realized through the combination of a multi-head attention mechanism and edge features.
arXiv Detail & Related papers (2023-10-26T12:30:11Z) - AGNN: Alternating Graph-Regularized Neural Networks to Alleviate
Over-Smoothing [29.618952407794776]
We propose an Alternating Graph-regularized Neural Network (AGNN) composed of Graph Convolutional Layer (GCL) and Graph Embedding Layer (GEL)
GEL is derived from the graph-regularized optimization containing Laplacian embedding term, which can alleviate the over-smoothing problem.
AGNN is evaluated via a large number of experiments including performance comparison with some multi-layer or multi-order graph neural networks.
arXiv Detail & Related papers (2023-04-14T09:20:03Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data.
The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not easily incorporated into a GNN.
Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data.
arXiv Detail & Related papers (2022-06-16T22:46:33Z) - MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs [55.66953093401889]
Masked graph autoencoder (MGAE) framework to perform effective learning on graph structure data.
Taking insights from self-supervised learning, we randomly mask a large proportion of edges and try to reconstruct these missing edges during training.
arXiv Detail & Related papers (2022-01-07T16:48:07Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Graph Cross Networks with Vertex Infomax Pooling [69.38969610952927]
We propose a novel graph cross network (GXN) to achieve comprehensive feature learning from multiple scales of a graph.
Based on trainable hierarchical representations of a graph, GXN enables the interchange of intermediate features across scales to promote information flow.
arXiv Detail & Related papers (2020-10-05T06:34:23Z) - A Multiscale Graph Convolutional Network Using Hierarchical Clustering [0.0]
A novel architecture is explored which exploits this information through a multiscale decomposition.
A dendrogram is produced by a Girvan-Newman hierarchical clustering algorithm.
The architecture is tested on a benchmark citation network, demonstrating competitive performance.
arXiv Detail & Related papers (2020-06-22T18:13:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.