Sparse Symplectically Integrated Neural Networks
- URL: http://arxiv.org/abs/2006.12972v2
- Date: Wed, 28 Oct 2020 05:11:31 GMT
- Title: Sparse Symplectically Integrated Neural Networks
- Authors: Daniel M. DiPietro, Shiying Xiong and Bo Zhu
- Abstract summary: We introduce Sparselectically Integrated Neural Networks (SSINNs)
SSINNs are a novel model for learning Hamiltonian dynamical systems from data.
We evaluate SSINNs on four classical Hamiltonian dynamical problems.
- Score: 15.191984347149667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Sparse Symplectically Integrated Neural Networks (SSINNs), a
novel model for learning Hamiltonian dynamical systems from data. SSINNs
combine fourth-order symplectic integration with a learned parameterization of
the Hamiltonian obtained using sparse regression through a mathematically
elegant function space. This allows for interpretable models that incorporate
symplectic inductive biases and have low memory requirements. We evaluate
SSINNs on four classical Hamiltonian dynamical problems: the H\'enon-Heiles
system, nonlinearly coupled oscillators, a multi-particle mass-spring system,
and a pendulum system. Our results demonstrate promise in both system
prediction and conservation of energy, often outperforming the current
state-of-the-art black-box prediction techniques by an order of magnitude.
Further, SSINNs successfully converge to true governing equations from highly
limited and noisy data, demonstrating potential applicability in the discovery
of new physical governing equations.
Related papers
- Learning Generalized Hamiltonians using fully Symplectic Mappings [0.32985979395737786]
Hamiltonian systems have the important property of being conservative, that is, energy is conserved throughout the evolution.
In particular Hamiltonian Neural Networks have emerged as a mechanism to incorporate structural inductive bias into the NN model.
We show that symplectic schemes are robust to noise and provide a good approximation of the system Hamiltonian when the state variables are sampled from a noisy observation.
arXiv Detail & Related papers (2024-09-17T12:45:49Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Applications of Machine Learning to Modelling and Analysing Dynamical
Systems [0.0]
We propose an architecture which combines existing Hamiltonian Neural Network structures into Adaptable Symplectic Recurrent Neural Networks.
This architecture is found to significantly outperform previously proposed neural networks when predicting Hamiltonian dynamics.
We show that this method works efficiently for single parameter potentials and provides accurate predictions even over long periods of time.
arXiv Detail & Related papers (2023-07-22T19:04:17Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Hamiltonian Neural Networks with Automatic Symmetry Detection [0.0]
Hamiltonian neural networks (HNN) have been introduced to incorporate prior physical knowledge.
We enhance HNN with a Lie algebra framework to detect and embed symmetries in the neural network.
arXiv Detail & Related papers (2023-01-19T07:34:57Z) - Symplectically Integrated Symbolic Regression of Hamiltonian Dynamical
Systems [11.39873640706974]
Symplectically Integrated Symbolic Regression (SISR) is a novel technique for learning physical governing equations from data.
SISR employs a deep symbolic regression approach, using a multi-layer LSTM-RNN with mutation to probabilistically sample Hamiltonian symbolic expressions.
arXiv Detail & Related papers (2022-09-04T03:17:40Z) - Learning Trajectories of Hamiltonian Systems with Neural Networks [81.38804205212425]
We propose to enhance Hamiltonian neural networks with an estimation of a continuous-time trajectory of the modeled system.
We demonstrate that the proposed integration scheme works well for HNNs, especially with low sampling rates, noisy and irregular observations.
arXiv Detail & Related papers (2022-04-11T13:25:45Z) - Learning Neural Hamiltonian Dynamics: A Methodological Overview [109.40968389896639]
Hamiltonian dynamics endows neural networks with accurate long-term prediction, interpretability, and data-efficient learning.
We systematically survey recently proposed Hamiltonian neural network models, with a special emphasis on methodologies.
arXiv Detail & Related papers (2022-02-28T22:54:39Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.