Hamiltonian Neural Networks with Automatic Symmetry Detection
- URL: http://arxiv.org/abs/2301.07928v2
- Date: Mon, 24 Apr 2023 12:59:58 GMT
- Title: Hamiltonian Neural Networks with Automatic Symmetry Detection
- Authors: Eva Dierkes and Christian Offen and Sina Ober-Bl\"obaum and Kathrin
Fla{\ss}kamp
- Abstract summary: Hamiltonian neural networks (HNN) have been introduced to incorporate prior physical knowledge.
We enhance HNN with a Lie algebra framework to detect and embed symmetries in the neural network.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Hamiltonian neural networks (HNN) have been introduced to
incorporate prior physical knowledge when learning the dynamical equations of
Hamiltonian systems. Hereby, the symplectic system structure is preserved
despite the data-driven modeling approach. However, preserving symmetries
requires additional attention. In this research, we enhance HNN with a Lie
algebra framework to detect and embed symmetries in the neural network. This
approach allows to simultaneously learn the symmetry group action and the total
energy of the system. As illustrating examples, a pendulum on a cart and a
two-body problem from astrodynamics are considered.
Related papers
- Learning Generalized Hamiltonians using fully Symplectic Mappings [0.32985979395737786]
Hamiltonian systems have the important property of being conservative, that is, energy is conserved throughout the evolution.
In particular Hamiltonian Neural Networks have emerged as a mechanism to incorporate structural inductive bias into the NN model.
We show that symplectic schemes are robust to noise and provide a good approximation of the system Hamiltonian when the state variables are sampled from a noisy observation.
arXiv Detail & Related papers (2024-09-17T12:45:49Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Coarse-Graining Hamiltonian Systems Using WSINDy [0.0]
We show that WSINDy can successfully identify a reduced Hamiltonian system in the presence of large intrinsics.
WSINDy naturally preserves the Hamiltonian structure by restricting to a trial basis of Hamiltonian vector fields.
We also provide a contribution to averaging theory by proving that first-order averaging at the level of vector fields preserves Hamiltonian structure in nearly-periodic Hamiltonian systems.
arXiv Detail & Related papers (2023-10-09T17:20:04Z) - Applications of Machine Learning to Modelling and Analysing Dynamical
Systems [0.0]
We propose an architecture which combines existing Hamiltonian Neural Network structures into Adaptable Symplectic Recurrent Neural Networks.
This architecture is found to significantly outperform previously proposed neural networks when predicting Hamiltonian dynamics.
We show that this method works efficiently for single parameter potentials and provides accurate predictions even over long periods of time.
arXiv Detail & Related papers (2023-07-22T19:04:17Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Learning Trajectories of Hamiltonian Systems with Neural Networks [81.38804205212425]
We propose to enhance Hamiltonian neural networks with an estimation of a continuous-time trajectory of the modeled system.
We demonstrate that the proposed integration scheme works well for HNNs, especially with low sampling rates, noisy and irregular observations.
arXiv Detail & Related papers (2022-04-11T13:25:45Z) - Learning Neural Hamiltonian Dynamics: A Methodological Overview [109.40968389896639]
Hamiltonian dynamics endows neural networks with accurate long-term prediction, interpretability, and data-efficient learning.
We systematically survey recently proposed Hamiltonian neural network models, with a special emphasis on methodologies.
arXiv Detail & Related papers (2022-02-28T22:54:39Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Sparse Symplectically Integrated Neural Networks [15.191984347149667]
We introduce Sparselectically Integrated Neural Networks (SSINNs)
SSINNs are a novel model for learning Hamiltonian dynamical systems from data.
We evaluate SSINNs on four classical Hamiltonian dynamical problems.
arXiv Detail & Related papers (2020-06-10T03:33:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.