論文の概要: A Data Scientist's Guide to Streamflow Prediction
- arxiv url: http://arxiv.org/abs/2006.12975v1
- Date: Fri, 5 Jun 2020 08:04:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-25 03:45:20.602927
- Title: A Data Scientist's Guide to Streamflow Prediction
- Title(参考訳): データサイエンティストのストリームフロー予測ガイド
- Authors: Martin Gauch and Jimmy Lin
- Abstract要約: 我々は,水文降雨要素と流出モデルに着目し,洪水の予測と流れの予測に応用する。
このガイドは、データサイエンティストが問題や水文学的な概念、そしてその過程で現れる詳細を理解するのを助けることを目的としています。
- 参考スコア(独自算出の注目度): 55.22219308265945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the paradigms of data-driven science have become essential
components of physical sciences, particularly in geophysical disciplines such
as climatology. The field of hydrology is one of these disciplines where
machine learning and data-driven models have attracted significant attention.
This offers significant potential for data scientists' contributions to
hydrologic research. As in every interdisciplinary research effort, an initial
mutual understanding of the domain is key to successful work later on. In this
work, we focus on the element of hydrologic rainfall--runoff models and their
application to forecast floods and predict streamflow, the volume of water
flowing in a river. This guide aims to help interested data scientists gain an
understanding of the problem, the hydrologic concepts involved, and the details
that come up along the way. We have captured lessons that we have learned while
"coming up to speed" on streamflow prediction and hope that our experiences
will be useful to the community.
- Abstract(参考訳): 近年、データ駆動科学のパラダイムは物理科学、特に気候学のような物理分野において重要な要素となっている。
水文学の分野は、機械学習とデータ駆動モデルが注目を浴びている分野の一つである。
これはデータ科学者による水文学研究への貢献に大きな可能性がある。
あらゆる学際的な研究の取り組みと同様に、ドメインに対する最初の相互理解が、後に成功する作業の鍵となる。
本研究では, 河川に流入する水量, 洪水予測, 河川流量予測への水文降雨モデルの適用について検討した。
このガイドは、データサイエンティストが問題、水文学的な概念、そしてその過程で現れる詳細を理解するのを助けることを目的としています。
ストリームフローの予測について“スピードアップ”しながら学んだ教訓をキャッチし、私たちの経験がコミュニティにとって役に立つことを願っています。
関連論文リスト
- Causal Representation Learning in Temporal Data via Single-Parent Decoding [66.34294989334728]
科学的研究はしばしば、システム内の高レベル変数の根底にある因果構造を理解しようとする。
科学者は通常、地理的に分布した温度測定などの低レベルの測定を収集する。
そこで本研究では,単一親の復号化による因果発見法を提案し,その上で下位の潜伏者と因果グラフを同時に学習する。
論文 参考訳(メタデータ) (2024-10-09T15:57:50Z) - TransGlow: Attention-augmented Transduction model based on Graph Neural
Networks for Water Flow Forecasting [4.915744683251151]
水量の水量予測は、水管理、洪水予測、洪水制御など様々な用途に有用である。
本稿では,GCRN(Graph Convolution Recurrent Neural Network)エンコーダデコーダの隠れ状態を増大させる時間予測モデルを提案する。
本稿では,河川,河川,湖上のカナダステーションのネットワークから,新たな水流のベンチマークデータセットを提案する。
論文 参考訳(メタデータ) (2023-12-10T18:23:40Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - A Graph-Based Modeling Framework for Tracing Hydrological Pollutant
Transport in Surface Waters [0.0]
本稿では,水系,河川,流域を横断する汚染物質輸送と運命を理解するためのグラフモデリングフレームワークを提案する。
グラフ表現は、接続性をキャプチャし、上流の汚染物質源を特定するための直感的なアプローチを提供する。
我々のツールは、ステークホルダーが効果的な汚染防止・軽減のプラクティスを設計するのを助けようとしている。
論文 参考訳(メタデータ) (2023-02-10T00:30:38Z) - GFlowNets for AI-Driven Scientific Discovery [74.27219800878304]
我々はGFlowNetsと呼ばれる新しい確率論的機械学習フレームワークを提案する。
GFlowNetsは、実験科学ループのモデリング、仮説生成、実験的な設計段階に適用できる。
我々は、GFlowNetsがAIによる科学的発見の貴重なツールになり得ると論じている。
論文 参考訳(メタデータ) (2023-02-01T17:29:43Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
水中音響から風速時系列を検索するための深層学習手法を提案する。
我々のアプローチは、事前の物理知識と計算効率の両面から恩恵を受けるために、データ同化と学習ベースのフレームワークをブリッジする。
論文 参考訳(メタデータ) (2022-08-18T15:27:40Z) - Physics-informed Reinforcement Learning for Perception and Reasoning
about Fluids [0.0]
本研究では,流体知覚と観測からの推論のための物理インフォームド強化学習戦略を提案する。
本研究では,コモディティカメラで自由表面を観察した未確認液体の追跡(知覚)と解析(推論)を行う手法を開発した。
論文 参考訳(メタデータ) (2022-03-11T07:01:23Z) - Unlocking the potential of deep learning for marine ecology: overview,
applications, and outlook [8.3226670069051]
本稿では,海洋生態学者と計算機科学者のギャップを埋めることを目的としている。
本研究では, 一般的な深層学習手法を, 平易な言語における生態データ分析に適用する。
我々は,海洋生態学への深層学習の確立と新たな応用を通じて,課題と機会を解説する。
論文 参考訳(メタデータ) (2021-09-29T21:59:16Z) - Physics Guided Machine Learning Methods for Hydrology [21.410993515618895]
SWAT (Soil and Water Assessment Tool) と組み合わせたLSTMに基づくディープラーニングアーキテクチャを提案する。
アプローチの有効性はミネソタ州南東部のルート川流域の南支流にあるいくつかの小さな流域で分析されている。
論文 参考訳(メタデータ) (2020-12-02T19:17:19Z) - Predictive Analytics for Water Asset Management: Machine Learning and
Survival Analysis [55.41644538483948]
本研究では,水管故障の予測のための統計的および機械学習の枠組みについて検討する。
スペイン,バルセロナの配水ネットワーク内の全管の故障記録を含むデータセットを用いて検討を行った。
その結果, 管形状, 年齢, 材質, 土壌被覆など, 重要な危険因子の影響が明らかにされた。
論文 参考訳(メタデータ) (2020-07-02T19:08:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。