論文の概要: dm_control: Software and Tasks for Continuous Control
- arxiv url: http://arxiv.org/abs/2006.12983v2
- Date: Mon, 7 Sep 2020 14:28:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 05:29:41.780552
- Title: dm_control: Software and Tasks for Continuous Control
- Title(参考訳): dm_control: 継続的制御のためのソフトウェアとタスク
- Authors: Yuval Tassa, Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron,
Piotr Trochim, Siqi Liu, Steven Bohez, Josh Merel, Tom Erez, Timothy
Lillicrap, Nicolas Heess
- Abstract要約: dm_controlソフトウェアパッケージは、強化学習エージェントのためのPythonライブラリとタスクスイートの集合体である。
MuJoCoラッパーは、関数とデータ構造に便利なバインディングを提供する。
Control Suiteは、パフォーマンスベンチマークとして機能することを意図した、標準化された構造を持つタスクの固定セットである。
- 参考スコア(独自算出の注目度): 24.588523489116326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dm_control software package is a collection of Python libraries and task
suites for reinforcement learning agents in an articulated-body simulation. A
MuJoCo wrapper provides convenient bindings to functions and data structures.
The PyMJCF and Composer libraries enable procedural model manipulation and task
authoring. The Control Suite is a fixed set of tasks with standardised
structure, intended to serve as performance benchmarks. The Locomotion
framework provides high-level abstractions and examples of locomotion tasks. A
set of configurable manipulation tasks with a robot arm and snap-together
bricks is also included. dm_control is publicly available at
https://www.github.com/deepmind/dm_control
- Abstract(参考訳): dm_controlソフトウェアパッケージは、articulated-bodyシミュレーションにおける強化学習エージェントのためのpythonライブラリとタスクスイートのコレクションである。
MuJoCoラッパーは、関数とデータ構造に便利なバインディングを提供する。
PyMJCFとComposerライブラリは手続きモデル操作とタスクオーサリングを可能にする。
Control Suiteは、パフォーマンスベンチマークとして機能することを意図した、標準化された構造を持つタスクの固定セットである。
locomotionフレームワークは、locomotionタスクのハイレベルな抽象化と例を提供する。
ロボットアームとスナップツーザブロックによる一連の設定可能な操作タスクも含んでいる。
dm_controlはhttps://www.github.com/deepmind/dm_controlで公開されている。
関連論文リスト
- KerasCV and KerasNLP: Vision and Language Power-Ups [9.395199188271254]
KerasCVとKerasNLPはコンピュータビジョンと自然言語処理のためのKeras APIの拡張である。
これらのドメインパッケージは、使いやすさとパフォーマンスを重視した高速な実験を可能にするように設計されている。
ライブラリは完全にオープンソース(Apache 2.0ライセンス)で、GitHubから入手できる。
論文 参考訳(メタデータ) (2024-05-30T16:58:34Z) - MeMo: Meaningful, Modular Controllers via Noise Injection [25.541496793132183]
新たなロボットが同じパーツから構築された場合,モジュール型コントローラを再利用することで,その制御を迅速に学習できることが示される。
私たちはMeMoと呼ばれるフレームワークでこれを実現し、Meは(Me)有界で(Mo)有界なコントローラーを学習します。
我々は,ロボット形態変化の簡易化を目標として,移動環境と把握環境の枠組みをベンチマークした。
論文 参考訳(メタデータ) (2024-05-24T18:39:20Z) - AgentKit: Structured LLM Reasoning with Dynamic Graphs [91.09525140733987]
多機能エージェントのための直感的なLCMプロンプトフレームワーク(AgentKit)を提案する。
AgentKitは、単純な自然言語プロンプトから複雑な"思考プロセス"を明示的に構築するための統一されたフレームワークを提供する。
論文 参考訳(メタデータ) (2024-04-17T15:40:45Z) - pyvene: A Library for Understanding and Improving PyTorch Models via
Interventions [79.72930339711478]
$textbfpyvene$は、さまざまなPyTorchモジュールに対するカスタマイズ可能な介入をサポートするオープンソースライブラリである。
私たちは、$textbfpyvene$が、ニューラルモデルへの介入を実行し、他のモデルとインターバルされたモデルを共有するための統一されたフレームワークを提供する方法を示します。
論文 参考訳(メタデータ) (2024-03-12T16:46:54Z) - Executable Code Actions Elicit Better LLM Agents [76.95566120678787]
この研究は、Pythonコードを使用して、Large Language Model(LLM)エージェントのアクションを統一されたアクション空間(CodeAct)に統合することを提案する。
Pythonインタプリタと統合されたCodeActは、コードアクションを実行し、事前アクションを動的に修正したり、マルチターンインタラクションを通じて新しい観察に新しいアクションを発行することができる。
CodeActのパフォーマンス向上は、解釈可能なコードを実行し、自然言語を使ってユーザとコラボレーションすることで、環境と対話するオープンソースのLLMエージェントを構築する動機となります。
論文 参考訳(メタデータ) (2024-02-01T21:38:58Z) - An LLM Compiler for Parallel Function Calling [68.04566807806071]
我々は,複数の関数呼び出しを効率的にオーケストレーションするために並列に関数を実行するLLMCompilerを紹介する。
ReActと比較して、一貫したレイテンシの高速化が3.7倍、コストの削減が6.7倍、精度が9%向上している。
論文 参考訳(メタデータ) (2023-12-07T18:32:04Z) - ControlLLM: Augment Language Models with Tools by Searching on Graphs [97.62758830255002]
我々は,大規模言語モデル(LLM)が実世界のタスクを解くためのマルチモーダルツールを利用できる新しいフレームワークであるControlLLMを提案する。
フレームワークは,(1)複雑なタスクを明確なサブタスクに分割し,入力と出力を適切に定義したサブタスクに分解するtextittask Decomposer,(2)構築済みのツールグラフ上で最適なソリューションパスを探索する textitThoughts-on-Graph(ToG)パラダイム,(3)ソリューションパスを解釈して実行するリッチなツールボックスを備えた textitexecution Engine,の3つの主要なコンポーネントから構成される。
論文 参考訳(メタデータ) (2023-10-26T21:57:21Z) - Plan, Eliminate, and Track -- Language Models are Good Teachers for
Embodied Agents [99.17668730578586]
事前訓練された大言語モデル(LLM)は、世界に関する手続き的な知識をキャプチャする。
Plan, Eliminate, and Track (PET)フレームワークはタスク記述をハイレベルなサブタスクのリストに変換する。
PETフレームワークは、人間の目標仕様への一般化のために、SOTAよりも15%改善されている。
論文 参考訳(メタデータ) (2023-05-03T20:11:22Z) - Deep Whole-Body Control: Learning a Unified Policy for Manipulation and
Locomotion [25.35885216505385]
装着されたアームは、移動操作タスクへの脚付きロボットの適用性を著しく向上させることができる。
このような手足のマニピュレータのための標準的な階層制御パイプラインは、コントローラを操作と移動のものと分離することである。
我々は、強化学習を用いて、足のマニピュレータの全身制御のための統一的なポリシーを学習する。
論文 参考訳(メタデータ) (2022-10-18T17:59:30Z) - Learning to Compose Hierarchical Object-Centric Controllers for Robotic
Manipulation [26.24940293693809]
本稿では、強化学習を用いて、操作タスクのための階層型オブジェクト中心コントローラを構築することを提案する。
シミュレーションと実世界の双方での実験では、提案手法がサンプル効率の向上、ゼロショットの一般化、微調整なしでのシミュレーションと現実の移動にどのように寄与するかが示されている。
論文 参考訳(メタデータ) (2020-11-09T18:38:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。