D2P-Fed: Differentially Private Federated Learning With Efficient
Communication
- URL: http://arxiv.org/abs/2006.13039v5
- Date: Sat, 2 Jan 2021 22:02:32 GMT
- Title: D2P-Fed: Differentially Private Federated Learning With Efficient
Communication
- Authors: Lun Wang, Ruoxi Jia and Dawn Song
- Abstract summary: We propose a unified scheme to achieve both differential privacy (DP) and communication efficiency in federated learning (FL)
In particular, compared with the only prior work taking care of both aspects, D2P-Fed provides stronger privacy guarantee, better composability and smaller communication cost.
The results show that D2P-Fed outperforms the-state-of-the-art by 4.7% to 13.0% in terms of model accuracy while saving one third of the communication cost.
- Score: 78.57321932088182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose the discrete Gaussian based differentially private
federated learning (D2P-Fed), a unified scheme to achieve both differential
privacy (DP) and communication efficiency in federated learning (FL). In
particular, compared with the only prior work taking care of both aspects,
D2P-Fed provides stronger privacy guarantee, better composability and smaller
communication cost. The key idea is to apply the discrete Gaussian noise to the
private data transmission. We provide complete analysis of the privacy
guarantee, communication cost and convergence rate of D2P-Fed. We evaluated
D2P-Fed on INFIMNIST and CIFAR10. The results show that D2P-Fed outperforms
the-state-of-the-art by 4.7% to 13.0% in terms of model accuracy while saving
one third of the communication cost.
Related papers
- FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Binary Federated Learning with Client-Level Differential Privacy [7.854806519515342]
Federated learning (FL) is a privacy-preserving collaborative learning framework.
Existing FL systems typically adopt Federated Average (FedAvg) as the training algorithm.
We propose a communication-efficient FL training algorithm with differential privacy guarantee.
arXiv Detail & Related papers (2023-08-07T06:07:04Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
We propose a differentially private high-dimensional data publication mechanism (DP2-Pub) that runs in two phases.
splitting attributes into several low-dimensional clusters with high intra-cluster cohesion and low inter-cluster coupling helps obtain a reasonable privacy budget.
We also extend our DP2-Pub mechanism to the scenario with a semi-honest server which satisfies local differential privacy.
arXiv Detail & Related papers (2022-08-24T17:52:43Z) - Voting-based Approaches For Differentially Private Federated Learning [87.2255217230752]
This work is inspired by knowledge transfer non-federated privacy learning from Papernot et al.
We design two new DPFL schemes, by voting among the data labels returned from each local model, instead of averaging the gradients.
Our approaches significantly improve the privacy-utility trade-off over the state-of-the-arts in DPFL.
arXiv Detail & Related papers (2020-10-09T23:55:19Z) - Federated Learning with Sparsification-Amplified Privacy and Adaptive
Optimization [27.243322019117144]
Federated learning (FL) enables distributed agents to collaboratively learn a centralized model without sharing their raw data with each other.
We propose a new FL framework with sparsification-amplified privacy.
Our approach integrates random sparsification with gradient perturbation on each agent to amplify privacy guarantee.
arXiv Detail & Related papers (2020-08-01T20:22:57Z) - LDP-FL: Practical Private Aggregation in Federated Learning with Local
Differential Privacy [20.95527613004989]
Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data.
Previous works do not give a practical solution due to three issues.
Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models.
arXiv Detail & Related papers (2020-07-31T01:08:57Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.