Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy
- URL: http://arxiv.org/abs/2302.09624v3
- Date: Thu, 1 Feb 2024 16:04:43 GMT
- Title: Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy
- Authors: Richeng Jin, Zhonggen Su, Caijun Zhong, Zhaoyang Zhang, Tony Quek,
Huaiyu Dai
- Abstract summary: We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
- Score: 51.11280118806893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a federated data analytics problem in which a server coordinates
the collaborative data analysis of multiple users with privacy concerns and
limited communication capability. The commonly adopted compression schemes
introduce information loss into local data while improving communication
efficiency, and it remains an open problem whether such discrete-valued
mechanisms provide any privacy protection. In this paper, we study the local
differential privacy guarantees of discrete-valued mechanisms with finite
output space through the lens of $f$-differential privacy (DP). More
specifically, we advance the existing literature by deriving tight $f$-DP
guarantees for a variety of discrete-valued mechanisms, including the binomial
noise and the binomial mechanisms that are proposed for privacy preservation,
and the sign-based methods that are proposed for data compression, in
closed-form expressions. We further investigate the amplification in privacy by
sparsification and propose a ternary stochastic compressor. By leveraging
compression for privacy amplification, we improve the existing methods by
removing the dependency of accuracy (in terms of mean square error) on
communication cost in the popular use case of distributed mean estimation,
therefore breaking the three-way tradeoff between privacy, communication, and
accuracy. Finally, we discuss the Byzantine resilience of the proposed
mechanism and its application in federated learning.
Related papers
- Unified Mechanism-Specific Amplification by Subsampling and Group Privacy Amplification [54.1447806347273]
Amplification by subsampling is one of the main primitives in machine learning with differential privacy.
We propose the first general framework for deriving mechanism-specific guarantees.
We analyze how subsampling affects the privacy of groups of multiple users.
arXiv Detail & Related papers (2024-03-07T19:36:05Z) - TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
We propose TernaryVote, which combines a ternary compressor and the majority vote mechanism to realize differential privacy, gradient compression, and Byzantine resilience simultaneously.
We theoretically quantify the privacy guarantee through the lens of the emerging f-differential privacy (DP) and the Byzantine resilience of the proposed algorithm.
arXiv Detail & Related papers (2024-02-16T16:41:14Z) - A Learning-based Declarative Privacy-Preserving Framework for Federated Data Management [23.847568516724937]
We introduce a new privacy-preserving technique that uses a deep learning model trained using Differentially-Private Descent (DP-SGD) algorithm.
We then demonstrate a novel declarative privacy-preserving workflow that allows users to specify "what private information to protect" rather than "how to protect"
arXiv Detail & Related papers (2024-01-22T22:50:59Z) - The Symmetric alpha-Stable Privacy Mechanism [0.0]
We present novel analysis of the Symmetric alpha-Stable (SaS) mechanism.
We prove that the mechanism is purely differentially private while remaining closed under convolution.
arXiv Detail & Related papers (2023-11-29T16:34:39Z) - Optimal Private Discrete Distribution Estimation with One-bit Communication [63.413106413939836]
We consider a private discrete distribution estimation problem with one-bit communication constraint.
We characterize the first-orders of the worst-case trade-off under the one-bit communication constraint.
These results demonstrate the optimal dependence of the privacy-utility trade-off under the one-bit communication constraint.
arXiv Detail & Related papers (2023-10-17T05:21:19Z) - Chained-DP: Can We Recycle Privacy Budget? [18.19895364709435]
We propose a novel Chained-DP framework enabling users to carry out data aggregation sequentially to recycle the privacy budget.
We show the mathematical nature of the sequential game, solve its Nash Equilibrium, and design an incentive mechanism with provable economic properties.
Our numerical simulation validates the effectiveness of Chained-DP, showing that it can significantly save privacy budget and lower estimation error compared to the traditional LDP mechanism.
arXiv Detail & Related papers (2023-09-12T08:07:59Z) - Summary Statistic Privacy in Data Sharing [23.50797952699759]
We study a setting where a data holder wishes to share data with a receiver, without revealing certain summary statistics of the data distribution.
We propose summary statistic privacy, a metric for quantifying the privacy risk of such a mechanism.
We show that the proposed quantization mechanisms achieve better privacy-distortion tradeoffs than alternative privacy mechanisms.
arXiv Detail & Related papers (2023-03-03T15:29:19Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
We propose a differentially private high-dimensional data publication mechanism (DP2-Pub) that runs in two phases.
splitting attributes into several low-dimensional clusters with high intra-cluster cohesion and low inter-cluster coupling helps obtain a reasonable privacy budget.
We also extend our DP2-Pub mechanism to the scenario with a semi-honest server which satisfies local differential privacy.
arXiv Detail & Related papers (2022-08-24T17:52:43Z) - Optimal and Differentially Private Data Acquisition: Central and Local
Mechanisms [9.599356978682108]
We consider a platform's problem of collecting data from privacy sensitive users to estimate an underlying parameter of interest.
We consider two popular differential privacy settings for providing privacy guarantees for the users: central and local.
We pose the mechanism design problem as the optimal selection of an estimator and payments that will elicit truthful reporting of users' privacy sensitivities.
arXiv Detail & Related papers (2022-01-10T00:27:43Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
Local exchange of estimates allows inference of data based on private data.
perturbations chosen independently at every agent, resulting in a significant performance loss.
We propose an alternative scheme, which constructs perturbations according to a particular nullspace condition, allowing them to be invisible.
arXiv Detail & Related papers (2020-10-23T10:35:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.