Likelihood-Free Gaussian Process for Regression
- URL: http://arxiv.org/abs/2006.13456v4
- Date: Thu, 23 May 2024 02:48:08 GMT
- Title: Likelihood-Free Gaussian Process for Regression
- Authors: Yuta Shikuri,
- Abstract summary: In some cases, we have little knowledge regarding the probability model.
We propose a novel framework called the likelihood-free Gaussian process (LFGP)
We expect that the proposed framework will contribute significantly to likelihood-free modeling.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian process regression can flexibly represent the posterior distribution of an interest parameter given sufficient information on the likelihood. However, in some cases, we have little knowledge regarding the probability model. For example, when investing in a financial instrument, the probability model of cash flow is generally unknown. In this paper, we propose a novel framework called the likelihood-free Gaussian process (LFGP), which allows representation of the posterior distributions of interest parameters for scalable problems without directly setting their likelihood functions. The LFGP establishes clusters in which the value of the interest parameter can be considered approximately identical, and it approximates the likelihood of the interest parameter in each cluster to a Gaussian using the asymptotic normality of the maximum likelihood estimator. We expect that the proposed framework will contribute significantly to likelihood-free modeling, particularly by reducing the assumptions for the probability model and the computational costs for scalable problems.
Related papers
- Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Sparse Gaussian Process Hyperparameters: Optimize or Integrate? [5.949779668853556]
We propose an algorithm for sparse Gaussian process regression which leverages MCMC to sample from the hyperparameter posterior.
We compare this scheme against natural baselines in literature along with variational GPs (SVGPs) along with an extensive computational analysis.
arXiv Detail & Related papers (2022-11-04T14:06:59Z) - Marginal Inference queries in Hidden Markov Models under context-free
grammar constraints [0.348097307252416]
We address the question of computing the likelihood of context-free grammars (CFGs) in Hidden Models (HMMs)
We show that the problem is NP-Hard, even with the promise that CFG has a degree of ambiguity less than or equal to 2.
We then propose a fully randomized approximation scheme to approximate the likelihood for the case of ambiguous CFGs.
arXiv Detail & Related papers (2022-06-26T12:44:18Z) - Bayesian Model Selection, the Marginal Likelihood, and Generalization [49.19092837058752]
We first revisit the appealing properties of the marginal likelihood for learning constraints and hypothesis testing.
We show how marginal likelihood can be negatively correlated with generalization, with implications for neural architecture search.
We also re-examine the connection between the marginal likelihood and PAC-Bayes bounds and use this connection to further elucidate the shortcomings of the marginal likelihood for model selection.
arXiv Detail & Related papers (2022-02-23T18:38:16Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for
Safety-Critical Applications [71.23286211775084]
We introduce robust Gaussian process uniform error bounds in settings with unknown hyper parameters.
Our approach computes a confidence region in the space of hyper parameters, which enables us to obtain a probabilistic upper bound for the model error.
Experiments show that the bound performs significantly better than vanilla and fully Bayesian processes.
arXiv Detail & Related papers (2021-09-06T17:10:01Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive.
New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space.
We propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and the weights of a neural network surrogate model.
arXiv Detail & Related papers (2021-08-28T14:31:45Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
Uncertainty is the only certainty there is.
Traditionally, the direct regression formulation is considered and the uncertainty is modeled by modifying the output space to a certain family of probabilistic distributions.
How to model the uncertainty within the present-day technologies for regression remains an open issue.
arXiv Detail & Related papers (2021-03-25T06:56:09Z) - On MCMC for variationally sparse Gaussian processes: A pseudo-marginal
approach [0.76146285961466]
Gaussian processes (GPs) are frequently used in machine learning and statistics to construct powerful models.
We propose a pseudo-marginal (PM) scheme that offers exact inference as well as computational gains through doubly estimators for the likelihood and large datasets.
arXiv Detail & Related papers (2021-03-04T20:48:29Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
Surrogate models have been successfully used in likelihood-free inference to decrease the number of simulator evaluations.
We propose a Deep Gaussian Process (DGP) surrogate model that can handle more irregularly behaved target distributions.
Our experiments show how DGPs can outperform GPs on objective functions with multimodal distributions and maintain a comparable performance in unimodal cases.
arXiv Detail & Related papers (2020-06-18T14:24:05Z) - Robust Gaussian Process Regression with a Bias Model [0.6850683267295248]
Most existing approaches replace an outlier-prone Gaussian likelihood with a non-Gaussian likelihood induced from a heavy tail distribution.
The proposed approach models an outlier as a noisy and biased observation of an unknown regression function.
Conditioned on the bias estimates, the robust GP regression can be reduced to a standard GP regression problem.
arXiv Detail & Related papers (2020-01-14T06:21:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.