Non-Gaussian Gaussian Processes for Few-Shot Regression
- URL: http://arxiv.org/abs/2110.13561v1
- Date: Tue, 26 Oct 2021 10:45:25 GMT
- Title: Non-Gaussian Gaussian Processes for Few-Shot Regression
- Authors: Marcin Sendera, Jacek Tabor, Aleksandra Nowak, Andrzej Bedychaj,
Massimiliano Patacchiola, Tomasz Trzci\'nski, Przemys{\l}aw Spurek, Maciej
Zi\k{e}ba
- Abstract summary: We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
- Score: 71.33730039795921
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian Processes (GPs) have been widely used in machine learning to model
distributions over functions, with applications including multi-modal
regression, time-series prediction, and few-shot learning. GPs are particularly
useful in the last application since they rely on Normal distributions and
enable closed-form computation of the posterior probability function.
Unfortunately, because the resulting posterior is not flexible enough to
capture complex distributions, GPs assume high similarity between subsequent
tasks - a requirement rarely met in real-world conditions. In this work, we
address this limitation by leveraging the flexibility of Normalizing Flows to
modulate the posterior predictive distribution of the GP. This makes the GP
posterior locally non-Gaussian, therefore we name our method Non-Gaussian
Gaussian Processes (NGGPs). More precisely, we propose an invertible ODE-based
mapping that operates on each component of the random variable vectors and
shares the parameters across all of them. We empirically tested the flexibility
of NGGPs on various few-shot learning regression datasets, showing that the
mapping can incorporate context embedding information to model different noise
levels for periodic functions. As a result, our method shares the structure of
the problem between subsequent tasks, but the contextualization allows for
adaptation to dissimilarities. NGGPs outperform the competing state-of-the-art
approaches on a diversified set of benchmarks and applications.
Related papers
- Deep Transformed Gaussian Processes [0.0]
Transformed Gaussian Processes (TGPs) are processes specified by transforming samples from the joint distribution from a prior process (typically a GP) using an invertible transformation.
We propose a generalization of TGPs named Deep Transformed Gaussian Processes (DTGPs), which follows the trend of concatenating layers of processes.
Experiments conducted evaluate the proposed DTGPs in multiple regression datasets, achieving good scalability and performance.
arXiv Detail & Related papers (2023-10-27T16:09:39Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
We present a novel extension of multi-task Gaussian Cox processes for modeling heterogeneous correlated tasks jointly.
A MOGP prior over the parameters of the dedicated likelihoods for classification, regression and point process tasks can facilitate sharing of information between heterogeneous tasks.
We derive a mean-field approximation to realize closed-form iterative updates for estimating model parameters.
arXiv Detail & Related papers (2023-08-29T15:01:01Z) - Non-Gaussian Process Regression [0.0]
We extend the GP framework into a new class of time-changed GPs that allow for straightforward modelling of heavy-tailed non-Gaussian behaviours.
We present Markov chain Monte Carlo inference procedures for this model and demonstrate the potential benefits.
arXiv Detail & Related papers (2022-09-07T13:08:22Z) - Shallow and Deep Nonparametric Convolutions for Gaussian Processes [0.0]
We introduce a nonparametric process convolution formulation for GPs that alleviates weaknesses by using a functional sampling approach.
We propose a composition of these nonparametric convolutions that serves as an alternative to classic deep GP models.
arXiv Detail & Related papers (2022-06-17T19:03:04Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
We propose a novel Bayesian surrogate model to balance exploration with exploitation of the search space.
To endow function sampling with scalability, random feature-based kernel approximation is leveraged per GP model.
To further establish convergence of the proposed EGP-TS to the global optimum, analysis is conducted based on the notion of Bayesian regret.
arXiv Detail & Related papers (2022-05-27T16:43:10Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
We propose an incremental ensemble (IE-) GP framework, where an EGP meta-learner employs an it ensemble of GP learners, each having a unique kernel belonging to a prescribed kernel dictionary.
With each GP expert leveraging the random feature-based approximation to perform online prediction and model update with it scalability, the EGP meta-learner capitalizes on data-adaptive weights to synthesize the per-expert predictions.
The novel IE-GP is generalized to accommodate time-varying functions by modeling structured dynamics at the EGP meta-learner and within each GP learner.
arXiv Detail & Related papers (2021-10-13T15:11:25Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Sparse Gaussian Process Variational Autoencoders [24.86751422740643]
Existing approaches for performing inference in GP-DGMs do not support sparse GP approximations based on points.
We develop the sparse Gaussian processal variation autoencoder (GP-VAE) characterised by the use of partial inference networks for parameterising sparse GP approximations.
arXiv Detail & Related papers (2020-10-20T10:19:56Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
Surrogate models have been successfully used in likelihood-free inference to decrease the number of simulator evaluations.
We propose a Deep Gaussian Process (DGP) surrogate model that can handle more irregularly behaved target distributions.
Our experiments show how DGPs can outperform GPs on objective functions with multimodal distributions and maintain a comparable performance in unimodal cases.
arXiv Detail & Related papers (2020-06-18T14:24:05Z) - Sequential Gaussian Processes for Online Learning of Nonstationary
Functions [9.997259201098602]
We propose a sequential Monte Carlo algorithm to fit infinite mixtures of GPs that capture non-stationary behavior while allowing for online, distributed inference.
Our approach empirically improves performance over state-of-the-art methods for online GP estimation in the presence of non-stationarity in time-series data.
arXiv Detail & Related papers (2019-05-24T02:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.