Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
Influence Functions
- URL: http://arxiv.org/abs/2006.13707v2
- Date: Sat, 27 Jun 2020 21:10:21 GMT
- Title: Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
Influence Functions
- Authors: Ahmed M. Alaa, Mihaela van der Schaar
- Abstract summary: Recurrent neural networks (RNNs) are instrumental in modelling sequential and time-series data.
Existing approaches for uncertainty quantification in RNNs are based predominantly on Bayesian methods.
We develop a frequentist alternative that: (a) does not interfere with model training or compromise its accuracy, (b) applies to any RNN architecture, and (c) provides theoretical coverage guarantees on the estimated uncertainty intervals.
- Score: 121.10450359856242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recurrent neural networks (RNNs) are instrumental in modelling sequential and
time-series data. Yet, when using RNNs to inform decision-making, predictions
by themselves are not sufficient; we also need estimates of predictive
uncertainty. Existing approaches for uncertainty quantification in RNNs are
based predominantly on Bayesian methods; these are computationally prohibitive,
and require major alterations to the RNN architecture and training.
Capitalizing on ideas from classical jackknife resampling, we develop a
frequentist alternative that: (a) does not interfere with model training or
compromise its accuracy, (b) applies to any RNN architecture, and (c) provides
theoretical coverage guarantees on the estimated uncertainty intervals. Our
method derives predictive uncertainty from the variability of the (jackknife)
sampling distribution of the RNN outputs, which is estimated by repeatedly
deleting blocks of (temporally-correlated) training data, and collecting the
predictions of the RNN re-trained on the remaining data. To avoid exhaustive
re-training, we utilize influence functions to estimate the effect of removing
training data blocks on the learned RNN parameters. Using data from a critical
care setting, we demonstrate the utility of uncertainty quantification in
sequential decision-making.
Related papers
- Uncertainty Quantification in Multivariable Regression for Material Property Prediction with Bayesian Neural Networks [37.69303106863453]
We introduce an approach for uncertainty quantification (UQ) within physics-informed BNNs.
We present case studies for predicting the creep rupture life of steel alloys.
The most promising framework for creep life prediction is BNNs based on Markov Chain Monte Carlo approximation of the posterior distribution of network parameters.
arXiv Detail & Related papers (2023-11-04T19:40:16Z) - A Benchmark on Uncertainty Quantification for Deep Learning Prognostics [0.0]
We assess some of the latest developments in the field of uncertainty quantification for prognostics deep learning.
This includes the state-of-the-art variational inference algorithms for Bayesian neural networks (BNN) as well as popular alternatives such as Monte Carlo Dropout (MCD), deep ensembles (DE) and heteroscedastic neural networks (HNN)
The performance of the methods is evaluated on a subset of the large NASA NCMAPSS dataset for aircraft engines.
arXiv Detail & Related papers (2023-02-09T16:12:47Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
A new approach with uncertainty-aware regression-based neural networks (NNs) shows promise over traditional deterministic methods and typical Bayesian NNs.
We detail the theoretical shortcomings and analyze the performance on synthetic and real-world data sets, showing that Deep Evidential Regression is a quantification rather than an exact uncertainty.
arXiv Detail & Related papers (2022-05-20T10:10:32Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Handling Missing Observations with an RNN-based Prediction-Update Cycle [10.478312054103975]
In tasks such as tracking, time-series data inevitably carry missing observations.
This paper introduces an RNN-based approach that provides a full temporal filtering cycle for motion state estimation.
arXiv Detail & Related papers (2021-03-22T11:55:10Z) - Uncertainty Estimation and Calibration with Finite-State Probabilistic
RNNs [29.84563789289183]
Uncertainty quantification is crucial for building reliable and trustable machine learning systems.
We propose to estimate uncertainty in recurrent neural networks (RNNs) via discrete state transitions over recurrent timesteps.
The uncertainty of the model can be quantified by running a prediction several times, each time sampling from the recurrent state transition distribution.
arXiv Detail & Related papers (2020-11-24T10:35:28Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Continual Learning in Recurrent Neural Networks [67.05499844830231]
We evaluate the effectiveness of continual learning methods for processing sequential data with recurrent neural networks (RNNs)
We shed light on the particularities that arise when applying weight-importance methods, such as elastic weight consolidation, to RNNs.
We show that the performance of weight-importance methods is not directly affected by the length of the processed sequences, but rather by high working memory requirements.
arXiv Detail & Related papers (2020-06-22T10:05:12Z) - Interval Neural Networks: Uncertainty Scores [11.74565957328407]
We propose a fast, non-Bayesian method for producing uncertainty scores in the output of pre-trained deep neural networks (DNNs)
This interval neural network (INN) has interval valued parameters and propagates its input using interval arithmetic.
In numerical experiments on an image reconstruction task, we demonstrate the practical utility of INNs as a proxy for the prediction error.
arXiv Detail & Related papers (2020-03-25T18:03:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.