Probabilistic Neural Networks (PNNs) with t-Distributed Outputs: Adaptive Prediction Intervals Beyond Gaussian Assumptions
- URL: http://arxiv.org/abs/2503.12354v1
- Date: Sun, 16 Mar 2025 04:47:48 GMT
- Title: Probabilistic Neural Networks (PNNs) with t-Distributed Outputs: Adaptive Prediction Intervals Beyond Gaussian Assumptions
- Authors: Farhad Pourkamali-Anaraki,
- Abstract summary: Probabilistic neural networks (PNNs) produce output distributions, enabling the construction of prediction intervals.<n>We propose t-Distributed Neural Networks (TDistNNs), which generate t-distributed outputs, parameterized by location, scale, and degrees of freedom.<n>We show that TDistNNs consistently produce narrower prediction intervals than Gaussian-based PNNs while maintaining proper coverage.
- Score: 2.77390041716769
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional neural network regression models provide only point estimates, failing to capture predictive uncertainty. Probabilistic neural networks (PNNs) address this limitation by producing output distributions, enabling the construction of prediction intervals. However, the common assumption of Gaussian output distributions often results in overly wide intervals, particularly in the presence of outliers or deviations from normality. To enhance the adaptability of PNNs, we propose t-Distributed Neural Networks (TDistNNs), which generate t-distributed outputs, parameterized by location, scale, and degrees of freedom. The degrees of freedom parameter allows TDistNNs to model heavy-tailed predictive distributions, improving robustness to non-Gaussian data and enabling more adaptive uncertainty quantification. We develop a novel loss function tailored for the t-distribution and derive efficient gradient computations for seamless integration into deep learning frameworks. Empirical evaluations on synthetic and real-world data demonstrate that TDistNNs improve the balance between coverage and interval width. Notably, for identical architectures, TDistNNs consistently produce narrower prediction intervals than Gaussian-based PNNs while maintaining proper coverage. This work contributes a flexible framework for uncertainty estimation in neural networks tasked with regression, particularly suited to settings involving complex output distributions.
Related papers
- Evidential Uncertainty Probes for Graph Neural Networks [3.5169632430086315]
We propose a plug-and-play framework for uncertainty quantification in Graph Neural Networks (GNNs)<n>Our Evidential Probing Network (EPN) uses a lightweight Multi-Layer-Perceptron (MLP) head to extract evidence from learned representations.<n>EPN-reg achieves state-of-the-art performance in accurate and efficient uncertainty quantification, making it suitable for real-world deployment.
arXiv Detail & Related papers (2025-03-11T07:00:54Z) - Positional Encoder Graph Quantile Neural Networks for Geographic Data [4.277516034244117]
We introduce the Positional Graph Quantile Neural Network (PE-GQNN), a novel method that integrates PE-GNNs, Quantile Neural Networks, and recalibration techniques in a fully nonparametric framework.
Experiments on benchmark datasets demonstrate that PE-GQNN significantly outperforms existing state-of-the-art methods in both predictive accuracy and uncertainty quantification.
arXiv Detail & Related papers (2024-09-27T16:02:12Z) - Scalable Subsampling Inference for Deep Neural Networks [0.0]
A non-asymptotic error bound has been developed to measure the performance of the fully connected DNN estimator.
A non-random subsampling technique--scalable subsampling--is applied to construct a subagged' DNN estimator.
The proposed confidence/prediction intervals appear to work well in finite samples.
arXiv Detail & Related papers (2024-05-14T02:11:38Z) - Probabilistic Neural Networks (PNNs) for Modeling Aleatoric Uncertainty
in Scientific Machine Learning [2.348041867134616]
This paper investigates the use of probabilistic neural networks (PNNs) to model aleatoric uncertainty.
PNNs generate probability distributions for the target variable, allowing the determination of both predicted means and intervals in regression scenarios.
In a real-world scientific machine learning context, PNNs yield remarkably accurate output mean estimates with R-squared scores approaching 0.97, and their predicted intervals exhibit a high correlation coefficient of nearly 0.80.
arXiv Detail & Related papers (2024-02-21T17:15:47Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
Graph neural networks (GNN) have emerged as a vehicle for applying deep network architectures to graph and relational data.
In this paper, we build upon existing work and treat GNN neighbor sampling as a multi-armed bandit problem.
We introduce a newly-designed reward function that introduces some degree of bias designed to reduce variance and avoid unstable, possibly-unbounded payouts.
arXiv Detail & Related papers (2021-03-01T15:55:58Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
Influence Functions [121.10450359856242]
Recurrent neural networks (RNNs) are instrumental in modelling sequential and time-series data.
Existing approaches for uncertainty quantification in RNNs are based predominantly on Bayesian methods.
We develop a frequentist alternative that: (a) does not interfere with model training or compromise its accuracy, (b) applies to any RNN architecture, and (c) provides theoretical coverage guarantees on the estimated uncertainty intervals.
arXiv Detail & Related papers (2020-06-20T22:45:32Z) - Stochastic Graph Neural Networks [123.39024384275054]
Graph neural networks (GNNs) model nonlinear representations in graph data with applications in distributed agent coordination, control, and planning.
Current GNN architectures assume ideal scenarios and ignore link fluctuations that occur due to environment, human factors, or external attacks.
In these situations, the GNN fails to address its distributed task if the topological randomness is not considered accordingly.
arXiv Detail & Related papers (2020-06-04T08:00:00Z) - Interval Neural Networks: Uncertainty Scores [11.74565957328407]
We propose a fast, non-Bayesian method for producing uncertainty scores in the output of pre-trained deep neural networks (DNNs)
This interval neural network (INN) has interval valued parameters and propagates its input using interval arithmetic.
In numerical experiments on an image reconstruction task, we demonstrate the practical utility of INNs as a proxy for the prediction error.
arXiv Detail & Related papers (2020-03-25T18:03:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.