論文の概要: Local Interpretability of Calibrated Prediction Models: A Case of Type 2
Diabetes Mellitus Screening Test
- arxiv url: http://arxiv.org/abs/2006.13815v1
- Date: Tue, 2 Jun 2020 14:14:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 00:10:36.151071
- Title: Local Interpretability of Calibrated Prediction Models: A Case of Type 2
Diabetes Mellitus Screening Test
- Title(参考訳): 校正予測モデルの局所的解釈 : 2型糖尿病スクリーニングテストの1例
- Authors: Simon Kocbek, Primoz Kocbek, Leona Cilar, Gregor Stiglic
- Abstract要約: 機械学習(ML)モデルは、しばしば「ブラックボックス」の特性のために複雑で解釈が難しい。
解釈可能性は多くの医療分野において、MLモデルに基づく意思決定に関連するリスクが高いため、非常に重要である。
本稿では,予測モデルのキャリブレーションが結果の解釈可能性に与える影響について検討する。
- 参考スコア(独自算出の注目度): 0.6934179242586092
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Learning (ML) models are often complex and difficult to interpret due
to their 'black-box' characteristics. Interpretability of a ML model is usually
defined as the degree to which a human can understand the cause of decisions
reached by a ML model. Interpretability is of extremely high importance in many
fields of healthcare due to high levels of risk related to decisions based on
ML models. Calibration of the ML model outputs is another issue often
overlooked in the application of ML models in practice. This paper represents
an early work in examination of prediction model calibration impact on the
interpretability of the results. We present a use case of a patient in diabetes
screening prediction scenario and visualize results using three different
techniques to demonstrate the differences between calibrated and uncalibrated
regularized regression model.
- Abstract(参考訳): 機械学習(ML)モデルは、しばしば「ブラックボックス」の特性のために複雑で解釈が難しい。
MLモデルの解釈可能性は通常、人間がMLモデルによって到達された決定の原因を理解することができる程度に定義される。
mlモデルに基づく意思決定に関連するリスクが高いため、多くの医療分野において解釈可能性は非常に重要である。
MLモデルの出力の校正は、実際にMLモデルを適用する際にしばしば見過ごされる問題である。
本稿では,予測モデルのキャリブレーションが結果の解釈性に与える影響について検討した。
糖尿病スクリーニング予測のシナリオと3つの異なる手法を用いて結果を可視化し, 校正回帰モデルと非校正回帰モデルの違いを検証した症例を報告する。
関連論文リスト
- Calibrating Large Language Models with Sample Consistency [76.23956851098598]
本稿では,複数サンプルモデル生成系の分布から信頼度を導出する可能性について,一貫性の3つの尺度を用いて検討する。
その結果、一貫性に基づくキャリブレーション手法は、既存のポストホック手法よりも優れていることがわかった。
種々のLMの特性に合わせて,キャリブレーションに適した整合性指標を選択するための実用的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-02-21T16:15:20Z) - Evaluating the Fairness of Deep Learning Uncertainty Estimates in
Medical Image Analysis [3.5536769591744557]
深層学習(DL)モデルは多くの医療画像解析タスクで大きな成功を収めている。
しかし、結果として得られたモデルを実際の臨床状況に展開するには、異なるサブ集団間での堅牢性と公平性が必要である。
近年の研究では、人口統計学的サブグループにまたがるDLモデルに有意なバイアスが見られ、モデルに公平性が欠如していることが示されている。
論文 参考訳(メタデータ) (2023-03-06T16:01:30Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
我々は、モデル選択に影響を及ぼす可能性のある重要な要因の観点から、複数のモデリング問題に対して異なるモデリングアプローチを体系的に比較する。
その結果,非凝集性予測性能が最も高いモデルでは,行動指標やアグリゲーションモードのシェアが低下することが示唆された。
MNLモデルは様々な状況において堅牢に機能するが、ML手法はWillingness to Payのような行動指標の推定を改善することができる。
論文 参考訳(メタデータ) (2023-01-11T11:10:32Z) - Building Robust Machine Learning Models for Small Chemical Science Data:
The Case of Shear Viscosity [3.4761212729163313]
我々はLennard-Jones (LJ)流体のせん断粘度を予測するために、いくつかの機械学習モデルを訓練する。
具体的には,モデル選択,性能評価,不確実性定量化に関する課題について検討した。
論文 参考訳(メタデータ) (2022-08-23T07:33:14Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
我々は、IlluminaやPacBioといった一般的なシークエンシングプラットフォームのエラープロファイルを模倣するために、SARS-CoV-2ゲノム配列を摂動する方法をいくつか紹介する。
シミュレーションに基づくいくつかのアプローチは、入力シーケンスに対する特定の敵攻撃に対する特定の埋め込み手法に対して、他の手法よりも堅牢(かつ正確)であることを示す。
論文 参考訳(メタデータ) (2022-07-18T19:16:56Z) - Spatial machine-learning model diagnostics: a model-agnostic
distance-based approach [91.62936410696409]
本研究は,空間予測誤差プロファイル (SPEP) と空間変数重要度プロファイル (SVIP) を,新しいモデルに依存しない評価・解釈ツールとして提案する。
統計学的手法、線形モデル、ランダムフォレスト、ハイブリッドアルゴリズムのSPEPとSVIPは、顕著な差異と関連する類似性を示している。
この新しい診断ツールは空間データ科学のツールキットを充実させ、MLモデルの解釈、選択、設計を改善する可能性がある。
論文 参考訳(メタデータ) (2021-11-13T01:50:36Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
潜在ハイブリッドモデル(LHM)は、専門家が設計したODEのシステムと機械学習したNeural ODEを統合し、システムのダイナミクスを完全に記述する。
新型コロナウイルス患者のLHMと実世界の集中治療データについて検討した。
論文 参考訳(メタデータ) (2021-06-05T11:42:45Z) - Statistical inference for individual fairness [24.622418924551315]
機械学習モデルにおける個々人の公平性の違反を検出する問題に注目する。
我々は,対向コスト関数のための一連の推論ツールを開発した。
実世界のケーススタディでツールの有用性を実証します。
論文 参考訳(メタデータ) (2021-03-30T22:49:25Z) - To what extent do human explanations of model behavior align with actual
model behavior? [91.67905128825402]
モデル推論決定の人間による説明が、モデルが実際にこれらの決定を下す方法と一致する程度を調べた。
自然言語の人間の説明が入力語に対するモデル感度とどのように一致するかを定量化する2つのアライメント指標を定義した。
モデルと人間の説明との整合は、NLI上のモデルの精度によって予測されないことが判明した。
論文 参考訳(メタデータ) (2020-12-24T17:40:06Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z) - Learning a Formula of Interpretability to Learn Interpretable Formulas [1.7616042687330642]
人間の解釈可能性の非対象プロキシのMLモデルが人間のフィードバックから学習可能であることを示す。
進化的シンボリック回帰について示す。
我々のアプローチは、次世代の解釈可能な(進化的な)MLアルゴリズムの設計のための重要なステップストーンである。
論文 参考訳(メタデータ) (2020-04-23T13:59:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。