Bit Error Robustness for Energy-Efficient DNN Accelerators
- URL: http://arxiv.org/abs/2006.13977v3
- Date: Fri, 9 Apr 2021 15:24:12 GMT
- Title: Bit Error Robustness for Energy-Efficient DNN Accelerators
- Authors: David Stutz, Nandhini Chandramoorthy, Matthias Hein, Bernt Schiele
- Abstract summary: We show that a combination of robust fixed-point quantization, weight clipping, and random bit error training (RandBET) improves robustness against random bit errors.
This leads to high energy savings from both low-voltage operation as well as low-precision quantization.
- Score: 93.58572811484022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural network (DNN) accelerators received considerable attention in
past years due to saved energy compared to mainstream hardware. Low-voltage
operation of DNN accelerators allows to further reduce energy consumption
significantly, however, causes bit-level failures in the memory storing the
quantized DNN weights. In this paper, we show that a combination of robust
fixed-point quantization, weight clipping, and random bit error training
(RandBET) improves robustness against random bit errors in (quantized) DNN
weights significantly. This leads to high energy savings from both low-voltage
operation as well as low-precision quantization. Our approach generalizes
across operating voltages and accelerators, as demonstrated on bit errors from
profiled SRAM arrays. We also discuss why weight clipping alone is already a
quite effective way to achieve robustness against bit errors. Moreover, we
specifically discuss the involved trade-offs regarding accuracy, robustness and
precision: Without losing more than 1% in accuracy compared to a normally
trained 8-bit DNN, we can reduce energy consumption on CIFAR-10 by 20%. Higher
energy savings of, e.g., 30%, are possible at the cost of 2.5% accuracy, even
for 4-bit DNNs.
Related papers
- NeuralFuse: Learning to Recover the Accuracy of Access-Limited Neural
Network Inference in Low-Voltage Regimes [52.51014498593644]
Deep neural networks (DNNs) have become ubiquitous in machine learning, but their energy consumption remains a notable issue.
We introduce NeuralFuse, a novel add-on module that addresses the accuracy-energy tradeoff in low-voltage regimes.
At a 1% bit error rate, NeuralFuse can reduce memory access energy by up to 24% while recovering accuracy by up to 57%.
arXiv Detail & Related papers (2023-06-29T11:38:22Z) - FlatENN: Train Flat for Enhanced Fault Tolerance of Quantized Deep
Neural Networks [0.03807314298073299]
We investigate the impact of bit-flip and stuck-at faults on activation-sparse quantized DNNs (QDNNs)
We show that a high level of activation sparsity comes at the cost of larger vulnerability to faults.
We propose the mitigation of the impact of faults by employing a sharpness-aware quantization scheme.
arXiv Detail & Related papers (2022-12-29T06:06:14Z) - SoftSNN: Low-Cost Fault Tolerance for Spiking Neural Network
Accelerators under Soft Errors [15.115813664357436]
SoftSNN is a novel methodology to mitigate soft errors in the weight registers (synapses) and neurons of SNN accelerators without re-execution.
For a 900-neuron network with even a high fault rate, our SoftSNN maintains the accuracy degradation below 3%, while reducing latency and energy by up to 3x and 2.3x respectively.
arXiv Detail & Related papers (2022-03-10T18:20:28Z) - Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure
DNN Accelerators [105.60654479548356]
We show that a combination of robust fixed-point quantization, weight clipping, as well as random bit error training (RandBET) improves robustness against random or adversarial bit errors in quantized DNN weights significantly.
This leads to high energy savings for low-voltage operation as well as low-precision quantization, but also improves security of DNN accelerators.
arXiv Detail & Related papers (2021-04-16T19:11:14Z) - SmartDeal: Re-Modeling Deep Network Weights for Efficient Inference and
Training [82.35376405568975]
Deep neural networks (DNNs) come with heavy parameterization, leading to external dynamic random-access memory (DRAM) for storage.
We present SmartDeal (SD), an algorithm framework to trade higher-cost memory storage/access for lower-cost computation.
We show that SD leads to 10.56x and 4.48x reduction in the storage and training energy, with negligible accuracy loss compared to state-of-the-art training baselines.
arXiv Detail & Related papers (2021-01-04T18:54:07Z) - ShiftAddNet: A Hardware-Inspired Deep Network [87.18216601210763]
ShiftAddNet is an energy-efficient multiplication-less deep neural network.
It leads to both energy-efficient inference and training, without compromising expressive capacity.
ShiftAddNet aggressively reduces over 80% hardware-quantified energy cost of DNNs training and inference, while offering comparable or better accuracies.
arXiv Detail & Related papers (2020-10-24T05:09:14Z) - FTBNN: Rethinking Non-linearity for 1-bit CNNs and Going Beyond [23.5996182207431]
We show that binarized convolution process owns an increasing linearity towards the target of minimizing such error, which in turn hampers BNN's discriminative ability.
We re-investigate and tune proper non-linear modules to fix that contradiction, leading to a strong baseline which achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-10-19T08:11:48Z) - SmartExchange: Trading Higher-cost Memory Storage/Access for Lower-cost
Computation [97.78417228445883]
We present SmartExchange, an algorithm- hardware co-design framework for energy-efficient inference of deep neural networks (DNNs)
We develop a novel algorithm to enforce a specially favorable DNN weight structure, where each layerwise weight matrix can be stored as the product of a small basis matrix and a large sparse coefficient matrix whose non-zero elements are all power-of-2.
We further design a dedicated accelerator to fully utilize the SmartExchange-enforced weights to improve both energy efficiency and latency performance.
arXiv Detail & Related papers (2020-05-07T12:12:49Z) - Towards Explainable Bit Error Tolerance of Resistive RAM-Based Binarized
Neural Networks [7.349786872131006]
Non-volatile memory, such as resistive RAM (RRAM), is an emerging energy-efficient storage.
Binary neural networks (BNNs) can tolerate a certain percentage of errors without a loss in accuracy.
The bit error tolerance (BET) in BNNs can be achieved by flipping the weight signs during training.
arXiv Detail & Related papers (2020-02-03T17:38:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.