SoftSNN: Low-Cost Fault Tolerance for Spiking Neural Network
Accelerators under Soft Errors
- URL: http://arxiv.org/abs/2203.05523v2
- Date: Sat, 12 Mar 2022 01:51:06 GMT
- Title: SoftSNN: Low-Cost Fault Tolerance for Spiking Neural Network
Accelerators under Soft Errors
- Authors: Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif, Muhammad
Shafique
- Abstract summary: SoftSNN is a novel methodology to mitigate soft errors in the weight registers (synapses) and neurons of SNN accelerators without re-execution.
For a 900-neuron network with even a high fault rate, our SoftSNN maintains the accuracy degradation below 3%, while reducing latency and energy by up to 3x and 2.3x respectively.
- Score: 15.115813664357436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Specialized hardware accelerators have been designed and employed to maximize
the performance efficiency of Spiking Neural Networks (SNNs). However, such
accelerators are vulnerable to transient faults (i.e., soft errors), which
occur due to high-energy particle strikes, and manifest as bit flips at the
hardware layer. These errors can change the weight values and neuron operations
in the compute engine of SNN accelerators, thereby leading to incorrect outputs
and accuracy degradation. However, the impact of soft errors in the compute
engine and the respective mitigation techniques have not been thoroughly
studied yet for SNNs. A potential solution is employing redundant executions
(re-execution) for ensuring correct outputs, but it leads to huge latency and
energy overheads. Toward this, we propose SoftSNN, a novel methodology to
mitigate soft errors in the weight registers (synapses) and neurons of SNN
accelerators without re-execution, thereby maintaining the accuracy with low
latency and energy overheads. Our SoftSNN methodology employs the following key
steps: (1) analyzing the SNN characteristics under soft errors to identify
faulty weights and neuron operations, which are required for recognizing faulty
SNN behavior; (2) a Bound-and-Protect technique that leverages this analysis to
improve the SNN fault tolerance by bounding the weight values and protecting
the neurons from faulty operations; and (3) devising lightweight hardware
enhancements for the neural hardware accelerator to efficiently support the
proposed technique. The experimental results show that, for a 900-neuron
network with even a high fault rate, our SoftSNN maintains the accuracy
degradation below 3%, while reducing latency and energy by up to 3x and 2.3x
respectively, as compared to the re-execution technique.
Related papers
- RescueSNN: Enabling Reliable Executions on Spiking Neural Network
Accelerators under Permanent Faults [15.115813664357436]
RescueSNN is a novel methodology to mitigate permanent faults in the compute engine of SNN chips.
RescueSNN improves accuracy by up to 80% while maintaining the throughput reduction below 25% in high fault rate.
arXiv Detail & Related papers (2023-04-08T15:24:57Z) - Improving Reliability of Spiking Neural Networks through Fault Aware
Threshold Voltage Optimization [0.0]
Spiking neural networks (SNNs) have made breakthroughs in computer vision by lending themselves to neuromorphic hardware.
Systolic-array SNN accelerators (systolicSNNs) have been proposed recently, but their reliability is still a major concern.
We present a novel fault mitigation method, i.e., fault-aware threshold voltage optimization in retraining (FalVolt)
arXiv Detail & Related papers (2023-01-12T19:30:21Z) - FlatENN: Train Flat for Enhanced Fault Tolerance of Quantized Deep
Neural Networks [0.03807314298073299]
We investigate the impact of bit-flip and stuck-at faults on activation-sparse quantized DNNs (QDNNs)
We show that a high level of activation sparsity comes at the cost of larger vulnerability to faults.
We propose the mitigation of the impact of faults by employing a sharpness-aware quantization scheme.
arXiv Detail & Related papers (2022-12-29T06:06:14Z) - Ultra-low Latency Adaptive Local Binary Spiking Neural Network with
Accuracy Loss Estimator [4.554628904670269]
We propose an ultra-low latency adaptive local binary spiking neural network (ALBSNN) with accuracy loss estimators.
Experimental results show that this method can reduce storage space by more than 20 % without losing network accuracy.
arXiv Detail & Related papers (2022-07-31T09:03:57Z) - Towards Lossless ANN-SNN Conversion under Ultra-Low Latency with Dual-Phase Optimization [30.098268054714048]
Spiking neural networks (SNNs) operating with asynchronous discrete events show higher energy efficiency with sparse computation.
A popular approach for implementing deep SNNs is ANN-SNN conversion combining both efficient training of ANNs and efficient inference of SNNs.
In this paper, we first identify that such performance degradation stems from the misrepresentation of the negative or overflow residual membrane potential in SNNs.
Inspired by this, we decompose the conversion error into three parts: quantization error, clipping error, and residual membrane potential representation error.
arXiv Detail & Related papers (2022-05-16T06:53:14Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure
DNN Accelerators [105.60654479548356]
We show that a combination of robust fixed-point quantization, weight clipping, as well as random bit error training (RandBET) improves robustness against random or adversarial bit errors in quantized DNN weights significantly.
This leads to high energy savings for low-voltage operation as well as low-precision quantization, but also improves security of DNN accelerators.
arXiv Detail & Related papers (2021-04-16T19:11:14Z) - FATNN: Fast and Accurate Ternary Neural Networks [89.07796377047619]
Ternary Neural Networks (TNNs) have received much attention due to being potentially orders of magnitude faster in inference, as well as more power efficient, than full-precision counterparts.
In this work, we show that, under some mild constraints, computational complexity of the ternary inner product can be reduced by a factor of 2.
We elaborately design an implementation-dependent ternary quantization algorithm to mitigate the performance gap.
arXiv Detail & Related papers (2020-08-12T04:26:18Z) - Bit Error Robustness for Energy-Efficient DNN Accelerators [93.58572811484022]
We show that a combination of robust fixed-point quantization, weight clipping, and random bit error training (RandBET) improves robustness against random bit errors.
This leads to high energy savings from both low-voltage operation as well as low-precision quantization.
arXiv Detail & Related papers (2020-06-24T18:23:10Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.