論文の概要: Bi-Level Graph Neural Networks for Drug-Drug Interaction Prediction
- arxiv url: http://arxiv.org/abs/2006.14002v1
- Date: Thu, 11 Jun 2020 04:49:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 13:23:02.993977
- Title: Bi-Level Graph Neural Networks for Drug-Drug Interaction Prediction
- Title(参考訳): 薬物-薬物相互作用予測のためのbiレベルグラフニューラルネットワーク
- Authors: Yunsheng Bai, Ken Gu, Yizhou Sun, Wei Wang
- Abstract要約: 薬物-薬物相互作用(DDI)やタンパク質-タンパク質相互作用(PPI)などの生物学的リンク予測タスクをモデル化するためのBi-GNNを導入する。
我々のモデルは、高レベル相互作用グラフと低レベル表現グラフの両方からの情報の利用を可能にするだけでなく、データのバイレベルの性質に対処する将来の研究機会のベースラインも提供します。
- 参考スコア(独自算出の注目度): 33.68442018194687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Bi-GNN for modeling biological link prediction tasks such as
drug-drug interaction (DDI) and protein-protein interaction (PPI). Taking
drug-drug interaction as an example, existing methods using machine learning
either only utilize the link structure between drugs without using the graph
representation of each drug molecule, or only leverage the individual drug
compound structures without using graph structure for the higher-level DDI
graph. The key idea of our method is to fundamentally view the data as a
bi-level graph, where the highest level graph represents the interaction
between biological entities (interaction graph), and each biological entity
itself is further expanded to its intrinsic graph representation
(representation graphs), where the graph is either flat like a drug compound or
hierarchical like a protein with amino acid level graph, secondary structure,
tertiary structure, etc. Our model not only allows the usage of information
from both the high-level interaction graph and the low-level representation
graphs, but also offers a baseline for future research opportunities to address
the bi-level nature of the data.
- Abstract(参考訳): 薬物-薬物相互作用(DDI)やタンパク質-タンパク質相互作用(PPI)などの生物学的リンク予測タスクをモデル化するためのBi-GNNを提案する。
薬物と薬物の相互作用を例として、機械学習を用いた既存の方法は、各薬物分子のグラフ表現を使わずに薬物間のリンク構造を利用するか、より高レベルのDDIグラフのグラフ構造を使わずに個々の薬物化合物構造を利用するかのいずれかである。
この手法の重要な考え方は、データをバイレベルグラフと見なすことであり、最も高いレベルグラフは生物学的実体(相互作用グラフ)間の相互作用を表し、各生物学的実体自体はさらに内在的なグラフ表現(表現グラフ)へと拡張され、そのグラフは薬品化合物のように平坦か、アミノ酸レベルグラフ、二次構造、第三次構造などを持つタンパク質のように階層的になる。
我々のモデルは、高レベル相互作用グラフと低レベル表現グラフの両方からの情報の利用を可能にするだけでなく、データのバイレベルの性質に対処する将来の研究機会のベースラインも提供します。
関連論文リスト
- Hypergraph-enhanced Dual Semi-supervised Graph Classification [14.339207883093204]
半教師付きグラフ分類のためのハイパーグラフ拡張DuALフレームワークHEALを提案する。
ノード間の高次関係をよりよく探求するために,複雑なノード依存を適応的に学習するハイパーグラフ構造を設計する。
学習したハイパーグラフに基づいて,ハイパーエッジ間の相互作用を捉える線グラフを導入する。
論文 参考訳(メタデータ) (2024-05-08T02:44:13Z) - H2G2-Net: A Hierarchical Heterogeneous Graph Generative Network Framework for Discovery of Multi-Modal Physiological Responses [3.7110156663640574]
本稿では,ドメイン知識のないグラフ構造を自動的に学習する階層型ヘテロジニアスグラフ生成ネットワーク(H2G2-Net)を提案する。
提案手法をマルチモーダルな生理学的信号からなるCagPilotデータセット上で検証する。
論文 参考訳(メタデータ) (2024-01-05T17:05:33Z) - GraphCL-DTA: a graph contrastive learning with molecular semantics for
drug-target binding affinity prediction [2.523552067304274]
GraphCL-DTAは、薬物表現を学習する分子グラフのためのグラフコントラスト学習フレームワークである。
次に、薬物と標的表現の均一性を調整するために直接使用できる新しい損失関数を設計する。
上記のイノベーティブな要素の有効性は、2つの実際のデータセットで検証される。
論文 参考訳(メタデータ) (2023-07-18T06:01:37Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
グラフは、医療領域において、非ユークリッドな非ユークリッドデータをユビキタスに表現し、分析するための強力なツールである。
近年の研究では、入力データサンプル間の関係を考慮すると、下流タスクに正の正の正則化効果があることが示されている。
タンパク質分類と脳イメージングのためのニューラルネットワークアーキテクチャであるGraph-in-Graph(GiG)を提案する。
論文 参考訳(メタデータ) (2022-04-01T10:01:37Z) - Hierarchical Graph Representation Learning for the Prediction of
Drug-Target Binding Affinity [7.023929372010717]
本稿では,薬物結合親和性予測,すなわちHGRL-DTAのための新しい階層グラフ表現学習モデルを提案する。
本稿では,グローバルレベルの親和性グラフと局所レベルの分子グラフから得られた階層的表現を統合するためのメッセージブロードキャスティング機構を採用し,また,類似性に基づく埋め込みマップを設計し,未知の薬物や標的に対する表現の推論というコールドスタート問題を解決する。
論文 参考訳(メタデータ) (2022-03-22T04:50:16Z) - CommPOOL: An Interpretable Graph Pooling Framework for Hierarchical
Graph Representation Learning [74.90535111881358]
新しい解釈可能なグラフプーリングフレームワークである CommPOOL を提案します。
グラフ表現学習プロセスにおいて、グラフの階層的なコミュニティ構造をキャプチャし、保存することができる。
CommPOOLは階層グラフ表現学習のための汎用的で柔軟なフレームワークです。
論文 参考訳(メタデータ) (2020-12-10T21:14:18Z) - Graph Information Bottleneck [77.21967740646784]
グラフニューラルネットワーク(GNN)は、ネットワーク構造とノード機能から情報を融合する表現的な方法を提供する。
GIBは、一般的なInformation Bottleneck (IB) を継承し、与えられたタスクに対する最小限の表現を学習することを目的としている。
提案したモデルが最先端のグラフ防御モデルよりも堅牢であることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:13:00Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z) - GoGNN: Graph of Graphs Neural Network for Predicting Structured Entity
Interactions [70.9481395807354]
本稿では,構造化エンティティグラフとエンティティ相互作用グラフの両方の特徴を階層的に抽出するグラフ・オブ・グラフニューラルネットワーク(GoGNN)を提案する。
GoGNNは、2つの代表的な構造化エンティティ相互作用予測タスクにおいて最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-05-12T03:46:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。