Simulation Methodology for Electron Transfer in CMOS Quantum Dots
- URL: http://arxiv.org/abs/2006.14103v1
- Date: Wed, 24 Jun 2020 23:50:21 GMT
- Title: Simulation Methodology for Electron Transfer in CMOS Quantum Dots
- Authors: Andrii Sokolov, Dmytro Mishagli, Panagiotis Giounanlis, Imran Bashir,
Dirk Leipold, Eugene Koskin, R. Bogdan Staszewski, and Elena Blokhina
- Abstract summary: We model electron transport in semiconductor qubits based on an advanced CMOS technology.
We demonstrate an order reduction and the steps necessary to obtain ordinary differential equations on probability amplitudes in a multi-particle system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The construction of quantum computer simulators requires advanced software
which can capture the most significant characteristics of the quantum behavior
and quantum states of qubits in such systems. Additionally, one needs to
provide valid models for the description of the interface between classical
circuitry and quantum core hardware. In this study, we model electron transport
in semiconductor qubits based on an advanced CMOS technology. Starting from 3D
simulations, we demonstrate an order reduction and the steps necessary to
obtain ordinary differential equations on probability amplitudes in a
multi-particle system. We compare numerical and semi-analytical techniques
concluding this paper by examining two case studies: the electron transfer
through multiple quantum dots and the construction of a Hadamard gate simulated
using a numerical method to solve the time-dependent Schrodinger equation and
the tight-binding formalism for a time-dependent Hamiltonian.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The Cost of Emulating a Small Quantum Annealing Problem in the
Circuit-Model [2.287415292857564]
We show that the overhead of emulation is substantial even for a simple problem.
This supports using analog quantum computation for solving time-dependent Hamiltonian dynamics in the short and mid-term.
arXiv Detail & Related papers (2024-02-27T16:41:54Z) - Sequential quantum simulation of spin chains with a single circuit QED
device [5.841833052422423]
Quantum simulation of many-body systems in materials science and chemistry are promising application areas for quantum computers.
We show how a single-circuit quantum electrodynamics device can be used to simulate the ground state of a highly-entangled quantum many-body spin chain.
We demonstrate that the large state space of the cavity can be used to replace multiple qubits in a qubit-only architecture, and could therefore simplify the design of quantum processors for materials simulation.
arXiv Detail & Related papers (2023-08-30T18:00:03Z) - Path integral simulation of exchange interactions in CMOS spin qubits [0.6742864446722399]
We present a PIMC algorithm that estimates exchange interactions of three-dimensional electrically defined quantum dots.
As an application, we study the impact of a single charge trap on two exchanging dots, opening the possibility of using this code to test the tolerance to disorder of CMOS devices.
arXiv Detail & Related papers (2023-07-07T08:36:33Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Scattering in the Ising Model Using Quantum Lanczos Algorithm [0.32228025627337864]
We simulate one-particle propagation and two-particle scattering in the one-dimensional transverse Ising model for 3 and 4 spatial sites on a quantum computer.
Results enable us to compute one- and two-particle transition amplitudes, particle numbers for spatial sites, and the transverse magnetization as functions of time.
arXiv Detail & Related papers (2020-08-20T04:05:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.