論文の概要: A Simple Approach to Case-Based Reasoning in Knowledge Bases
- arxiv url: http://arxiv.org/abs/2006.14198v2
- Date: Sun, 19 Jul 2020 01:26:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 03:56:39.739260
- Title: A Simple Approach to Case-Based Reasoning in Knowledge Bases
- Title(参考訳): 知識ベースにおけるケースベース推論への単純アプローチ
- Authors: Rajarshi Das, Ameya Godbole, Shehzaad Dhuliawala, Manzil Zaheer,
Andrew McCallum
- Abstract要約: 我々は,古典人工知能(AI)におけるケースベース推論を想起させる,アンフノトレーニングを必要とする知識グラフ(KG)における推論に対する驚くほど単純かつ正確なアプローチを提案する。
ソースエンティティとバイナリ関係が与えられたターゲットエンティティを見つけるタスクを考えてみましょう。
我々の非パラメトリックなアプローチは、与えられた関係を通して類似したソースエンティティを接続する複数のテキストトグラフパスパターンを見つけることによって、クエリ毎にクレープな論理ルールを導出します。
- 参考スコア(独自算出の注目度): 56.661396189466664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a surprisingly simple yet accurate approach to reasoning in
knowledge graphs (KGs) that requires \emph{no training}, and is reminiscent of
case-based reasoning in classical artificial intelligence (AI). Consider the
task of finding a target entity given a source entity and a binary relation.
Our non-parametric approach derives crisp logical rules for each query by
finding multiple \textit{graph path patterns} that connect similar source
entities through the given relation. Using our method, we obtain new
state-of-the-art accuracy, outperforming all previous models, on NELL-995 and
FB-122. We also demonstrate that our model is robust in low data settings,
outperforming recently proposed meta-learning approaches
- Abstract(参考訳): 我々は,従来の人工知能(ai)におけるケースベース推論を想起させる,知識グラフ(kgs)の推論に対する驚くほど単純かつ正確なアプローチを提案する。
ソースエンティティとバイナリ関係が与えられたターゲットエンティティを見つけるタスクを考えてみましょう。
我々の非パラメトリックなアプローチは、与えられた関係を通して類似のソースエンティティを接続する複数の \textit{graph path pattern} を見つけることで、クエリ毎に論理ルールをクリップする。
NELL-995 と FB-122 では,従来のモデルよりも高い精度で新しい最先端の精度が得られる。
私たちはまた、我々のモデルが低データ設定で堅牢であることを示し、最近提案されたメタラーニングアプローチよりも優れています。
関連論文リスト
- ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph [142.42275983201978]
本稿では,構造化推論を行うためのGNNを模倣するサブグラフ認識型自己認識機構を提案する。
また、モデルパラメータを2万のサブグラフで合成した質問に適応するための適応チューニング戦略も採用する。
実験により、ReasoningLMは、更新されたパラメータが少なく、トレーニングデータが少ない場合でも、最先端のモデルを大きなマージンで上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-30T07:18:54Z) - Principled and Efficient Motif Finding for Structure Learning of Lifted
Graphical Models [5.317624228510748]
構造学習は、ニューロシンボリックAIと統計リレーショナル学習の分野の中心となるAIの中核的な問題である。
昇降型グラフィカルモデルにおける構造モチーフのマイニングのための第一原理的アプローチを提案する。
我々は,最先端構造学習の手法を,精度で最大6%,実行時の最大80%で上回ることを示す。
論文 参考訳(メタデータ) (2023-02-09T12:21:55Z) - Automatic Semantic Modeling for Structural Data Source with the Prior
Knowledge from Knowledge Base [15.075047172918547]
本稿では、機械学習、グラフマッチング、修正された頻繁なサブグラフマイニングを用いて、構造化データソースを意味的に注釈付けする新しい手法を提案する。
提案手法は,少数のモデルしか知られていない難解な場合において,最先端の2つのソリューションより優れている。
論文 参考訳(メタデータ) (2022-12-21T10:54:59Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - CUP: Curriculum Learning based Prompt Tuning for Implicit Event Argument
Extraction [22.746071199667146]
Implicit Event argument extract (EAE) は、文書に散らばる可能性のある引数を特定することを目的としている。
本稿では,4つの学習段階によって暗黙的EAEを解消する,カリキュラム学習に基づくプロンプトチューニング(CUP)手法を提案する。
さらに,事前学習した言語モデルから関連する知識を引き出すために,プロンプトベースのエンコーダデコーダモデルを統合する。
論文 参考訳(メタデータ) (2022-05-01T16:03:54Z) - Generative Relation Linking for Question Answering over Knowledge Bases [12.778133758613773]
そこで本稿では, フレーミングを生成問題とする関係リンク手法を提案する。
このようなシーケンス・ツー・シーケンス・モデルを拡張して,対象とする知識ベースから構造化データを注入する。
我々は、議論-関係ペアのリストからなる構造化された出力を生成するためにモデルを訓練し、知識検証のステップを可能にする。
論文 参考訳(メタデータ) (2021-08-16T20:33:43Z) - From Canonical Correlation Analysis to Self-supervised Graph Neural
Networks [99.44881722969046]
本稿では,グラフデータを用いた自己教師付き表現学習のための概念的単純かつ効果的なモデルを提案する。
古典的カノニカル相関解析にインスパイアされた,革新的な特徴レベルの目的を最適化する。
提案手法は、7つの公開グラフデータセット上で競合的に動作する。
論文 参考訳(メタデータ) (2021-06-23T15:55:47Z) - Integrating Semantics and Neighborhood Information with Graph-Driven
Generative Models for Document Retrieval [51.823187647843945]
本稿では,周辺情報をグラフ誘導ガウス分布でエンコードし,その2種類の情報をグラフ駆動生成モデルと統合することを提案する。
この近似の下では、トレーニング対象がシングルトンまたはペアワイズ文書のみを含む用語に分解可能であることを証明し、モデルが非関連文書と同じくらい効率的にトレーニングできることを示す。
論文 参考訳(メタデータ) (2021-05-27T11:29:03Z) - Probabilistic Case-based Reasoning for Open-World Knowledge Graph
Completion [59.549664231655726]
ケースベース推論(CBR)システムは,与えられた問題に類似した事例を検索することで,新たな問題を解決する。
本稿では,知識ベース(KB)の推論において,そのようなシステムが実現可能であることを示す。
提案手法は,KB内の類似エンティティからの推論パスを収集することにより,エンティティの属性を予測する。
論文 参考訳(メタデータ) (2020-10-07T17:48:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。