論文の概要: Time-varying Graph Representation Learning via Higher-Order Skip-Gram
with Negative Sampling
- arxiv url: http://arxiv.org/abs/2006.14330v1
- Date: Thu, 25 Jun 2020 12:04:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 03:41:13.382825
- Title: Time-varying Graph Representation Learning via Higher-Order Skip-Gram
with Negative Sampling
- Title(参考訳): 負サンプリングを用いた高次スキップグラムによる時変グラフ表現学習
- Authors: Simone Piaggesi, Andr\'e Panisson
- Abstract要約: 我々は,スキップグラム埋め込み手法が行列分解を暗黙的に行うという事実に基づいて構築する。
負のサンプリングを持つ高次スキップグラムは、ノードと時間の役割を乱すことができることを示す。
提案手法を時間分解型対面近接データを用いて実証的に評価し,学習した時間変化グラフ表現が最先端の手法より優れていることを示す。
- 参考スコア(独自算出の注目度): 0.456877715768796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representation learning models for graphs are a successful family of
techniques that project nodes into feature spaces that can be exploited by
other machine learning algorithms. Since many real-world networks are
inherently dynamic, with interactions among nodes changing over time, these
techniques can be defined both for static and for time-varying graphs. Here, we
build upon the fact that the skip-gram embedding approach implicitly performs a
matrix factorization, and we extend it to perform implicit tensor factorization
on different tensor representations of time-varying graphs. We show that
higher-order skip-gram with negative sampling (HOSGNS) is able to disentangle
the role of nodes and time, with a small fraction of the number of parameters
needed by other approaches. We empirically evaluate our approach using
time-resolved face-to-face proximity data, showing that the learned
time-varying graph representations outperform state-of-the-art methods when
used to solve downstream tasks such as network reconstruction, and to predict
the outcome of dynamical processes such as disease spreading. The source code
and data are publicly available at https://github.com/simonepiaggesi/hosgns.
- Abstract(参考訳): グラフの表現学習モデルは、ノードを他の機械学習アルゴリズムによって活用できる特徴空間に投影する技術群として成功している。
多くの実世界のネットワークは本質的に動的であり、ノード間の相互作用は時間とともに変化するため、これらの技法は静的グラフと時変グラフの両方で定義できる。
ここでは,スキップグラム埋め込み手法が行列因数分解を暗黙的に行うという事実に基づいて,時間変化グラフの異なるテンソル表現に対して暗黙的なテンソル因数分解を行うように拡張する。
負サンプリングを用いた高次スキップグラム(HOSGNS)は,ノードと時間の役割を,他のアプローチで必要とされるパラメータのごく一部で切り離すことができることを示す。
本研究では,ネットワーク再構築などの下流課題の解決や,病気の拡散などの動的プロセスの結果を予測するために,学習した時間変化グラフ表現が最先端の手法よりも優れていることを示す。
ソースコードとデータはhttps://github.com/simonepiaggesi/hosgnsで公開されている。
関連論文リスト
- NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Graph-Level Embedding for Time-Evolving Graphs [24.194795771873046]
グラフ表現学習(ネットワーク埋め込みとも呼ばれる)は、様々なレベルの粒度で広く研究されている。
本稿では,このギャップに対処する時間グラフレベルの埋め込み手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T01:50:37Z) - Deep Temporal Graph Clustering [77.02070768950145]
深部時間グラフクラスタリング(GC)のための汎用フレームワークを提案する。
GCは、時間グラフの相互作用シーケンスに基づくバッチ処理パターンに適合するディープクラスタリング技術を導入している。
我々のフレームワークは、既存の時間グラフ学習手法の性能を効果的に向上させることができる。
論文 参考訳(メタデータ) (2023-05-18T06:17:50Z) - TodyNet: Temporal Dynamic Graph Neural Network for Multivariate Time
Series Classification [6.76723360505692]
未定義のグラフ構造を使わずに隠蔽時間依存を抽出できる新しい時間的動的グラフネットワーク(TodyNet)を提案する。
26のUEAベンチマークデータセットの実験は、提案されたTodyNetがMTSCタスクで既存のディープラーニングベースのメソッドより優れていることを示している。
論文 参考訳(メタデータ) (2023-04-11T09:21:28Z) - Towards Real-Time Temporal Graph Learning [10.647431919265346]
本稿では、時間グラフ構築を行い、低次元ノード埋め込みを生成し、オンライン環境でニューラルネットワークモデルを訓練するエンドツーエンドグラフ学習パイプラインを提案する。
論文 参考訳(メタデータ) (2022-10-08T22:14:31Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - Learning Sparse and Continuous Graph Structures for Multivariate Time
Series Forecasting [5.359968374560132]
Learning Sparse and Continuous Graphs for Forecasting (LSCGF)は、グラフ学習と予測に結合する新しいディープラーニングモデルである。
本稿では,スムーズ・スパース・ユニット (SSU) という新しい手法を提案する。
我々のモデルは、訓練可能な小さなパラメータで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-01-24T13:35:37Z) - Dynamic Graph Learning-Neural Network for Multivariate Time Series
Modeling [2.3022070933226217]
静的および動的グラフ学習ニューラルネットワーク(GL)という新しいフレームワークを提案する。
モデルはそれぞれ、データから静的グラフ行列と動的グラフ行列を取得し、長期パターンと短期パターンをモデル化する。
ほぼすべてのデータセットで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-12-06T08:19:15Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
本稿では,時間グラフネットワークに基づく動的ネットワーク表現学習のための新しいアプローチを提案する。
評価のために、時間的ネットワーク埋め込みの評価のためのベンチマークパイプラインを提供する。
欧州の大手銀行が提供した実世界のダウンストリームグラフ機械学習タスクにおいて、我々のモデルの適用性と優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-19T15:39:52Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。