Suggestive Annotation of Brain Tumour Images with Gradient-guided
Sampling
- URL: http://arxiv.org/abs/2006.14984v2
- Date: Fri, 3 Jul 2020 11:34:10 GMT
- Title: Suggestive Annotation of Brain Tumour Images with Gradient-guided
Sampling
- Authors: Chengliang Dai, Shuo Wang, Yuanhan Mo, Kaichen Zhou, Elsa Angelini,
Yike Guo, and Wenjia Bai
- Abstract summary: We propose an efficient annotation framework for brain tumour images that is able to suggest informative sample images for human experts to annotate.
Experiments show that training a segmentation model with only 19% suggestively annotated patient scans from BraTS 2019 dataset can achieve a comparable performance to training a model on the full dataset for whole tumour segmentation task.
- Score: 14.092503407739422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning has been widely adopted for medical image analysis in recent
years given its promising performance in image segmentation and classification
tasks. As a data-driven science, the success of machine learning, in particular
supervised learning, largely depends on the availability of manually annotated
datasets. For medical imaging applications, such annotated datasets are not
easy to acquire. It takes a substantial amount of time and resource to curate
an annotated medical image set. In this paper, we propose an efficient
annotation framework for brain tumour images that is able to suggest
informative sample images for human experts to annotate. Our experiments show
that training a segmentation model with only 19% suggestively annotated patient
scans from BraTS 2019 dataset can achieve a comparable performance to training
a model on the full dataset for whole tumour segmentation task. It demonstrates
a promising way to save manual annotation cost and improve data efficiency in
medical imaging applications.
Related papers
- Self-Supervised Pre-Training with Contrastive and Masked Autoencoder
Methods for Dealing with Small Datasets in Deep Learning for Medical Imaging [8.34398674359296]
Deep learning in medical imaging has the potential to minimize the risk of diagnostic errors, reduce radiologist workload, and accelerate diagnosis.
Training such deep learning models requires large and accurate datasets, with annotations for all training samples.
To address this challenge, deep learning models can be pre-trained on large image datasets without annotations using methods from the field of self-supervised learning.
arXiv Detail & Related papers (2023-08-12T11:31:01Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - A Knowledge Distillation framework for Multi-Organ Segmentation of
Medaka Fish in Tomographic Image [5.881800919492064]
We propose a self-training framework for multi-organ segmentation in tomographic images of Medaka fish.
We utilize the pseudo-labeled data from a pretrained model and adopt a Quality Teacher to refine the pseudo-labeled data.
The experimental results demonstrate that our method improves mean Intersection over Union (IoU) by 5.9% on the full dataset.
arXiv Detail & Related papers (2023-02-24T10:31:29Z) - RadTex: Learning Efficient Radiograph Representations from Text Reports [7.090896766922791]
We build a data-efficient learning framework that utilizes radiology reports to improve medical image classification performance with limited labeled data.
Our model achieves higher classification performance than ImageNet-supervised pretraining when labeled training data is limited.
arXiv Detail & Related papers (2022-08-05T15:06:26Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Suggestive Annotation of Brain MR Images with Gradient-guided Sampling [12.928940875474378]
We propose an efficient annotation framework for brain MR images that can suggest informative sample images for human experts to annotate.
We evaluate the framework on two different brain image analysis tasks, namely brain tumour segmentation and whole brain segmentation.
The proposed framework demonstrates a promising way to save manual annotation cost and improve data efficiency in medical imaging applications.
arXiv Detail & Related papers (2022-06-02T12:23:44Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
We use a dataset of chest X-ray images with bounding box labels for 13 different classes of anomalies.
We show that it is possible to achieve similar performance to a fully supervised model in terms of mean average precision and accuracy with only 60% of the labeled data.
arXiv Detail & Related papers (2022-06-01T09:20:30Z) - Self-Paced Contrastive Learning for Semi-supervisedMedical Image
Segmentation with Meta-labels [6.349708371894538]
We propose to adapt contrastive learning to work with meta-label annotations.
We use the meta-labels for pre-training the image encoder as well as to regularize a semi-supervised training.
Results on three different medical image segmentation datasets show that our approach highly boosts the performance of a model trained on a few scans.
arXiv Detail & Related papers (2021-07-29T04:30:46Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
We propose an unpaired image-to-image translation where the goal is to learn the mapping between an input endoscopic image and a corresponding annotation.
Our approach allows to train image segmentation models without the need to acquire expensive annotations.
We test our proposed method on Endovis 2017 challenge dataset and show that it is competitive with supervised segmentation methods.
arXiv Detail & Related papers (2020-07-09T01:39:39Z) - Confident Coreset for Active Learning in Medical Image Analysis [57.436224561482966]
We propose a novel active learning method, confident coreset, which considers both uncertainty and distribution for effectively selecting informative samples.
By comparative experiments on two medical image analysis tasks, we show that our method outperforms other active learning methods.
arXiv Detail & Related papers (2020-04-05T13:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.