Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis
- URL: http://arxiv.org/abs/2206.00344v1
- Date: Wed, 1 Jun 2022 09:20:30 GMT
- Title: Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis
- Authors: Marin Ben\v{c}evi\'c, Marija Habijan, Irena Gali\'c, Aleksandra
Pizurica
- Abstract summary: We use a dataset of chest X-ray images with bounding box labels for 13 different classes of anomalies.
We show that it is possible to achieve similar performance to a fully supervised model in terms of mean average precision and accuracy with only 60% of the labeled data.
- Score: 64.4093648042484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the largest problems in medical image processing is the lack of
annotated data. Labeling medical images often requires highly trained experts
and can be a time-consuming process. In this paper, we evaluate a method of
reducing the need for labeled data in medical image object detection by using
self-supervised neural network pretraining. We use a dataset of chest X-ray
images with bounding box labels for 13 different classes of anomalies. The
networks are pretrained on a percentage of the dataset without labels and then
fine-tuned on the rest of the dataset. We show that it is possible to achieve
similar performance to a fully supervised model in terms of mean average
precision and accuracy with only 60\% of the labeled data. We also show that it
is possible to increase the maximum performance of a fully-supervised model by
adding a self-supervised pretraining step, and this effect can be observed with
even a small amount of unlabeled data for pretraining.
Related papers
- Self-Supervised Pre-Training with Contrastive and Masked Autoencoder
Methods for Dealing with Small Datasets in Deep Learning for Medical Imaging [8.34398674359296]
Deep learning in medical imaging has the potential to minimize the risk of diagnostic errors, reduce radiologist workload, and accelerate diagnosis.
Training such deep learning models requires large and accurate datasets, with annotations for all training samples.
To address this challenge, deep learning models can be pre-trained on large image datasets without annotations using methods from the field of self-supervised learning.
arXiv Detail & Related papers (2023-08-12T11:31:01Z) - Automated Labeling of German Chest X-Ray Radiology Reports using Deep
Learning [50.591267188664666]
We propose a deep learning-based CheXpert label prediction model, pre-trained on reports labeled by a rule-based German CheXpert model.
Our results demonstrate the effectiveness of our approach, which significantly outperformed the rule-based model on all three tasks.
arXiv Detail & Related papers (2023-06-09T16:08:35Z) - An End-to-End Framework For Universal Lesion Detection With Missing
Annotations [24.902835211573628]
We present a novel end-to-end framework for mining unlabeled lesions while simultaneously training the detector.
Our framework follows the teacher-student paradigm. High-confidence predictions are combined with partially-labeled ground truth for training the student model.
arXiv Detail & Related papers (2023-03-27T09:16:10Z) - Self-Supervised Pretraining for 2D Medical Image Segmentation [0.0]
Self-supervised learning offers a way to lower the need for manually annotated data by pretraining models for a specific domain on unlabelled data.
We find that self-supervised pretraining on natural images and target-domain-specific images leads to the fastest and most stable downstream convergence.
In low-data scenarios, supervised ImageNet pretraining achieves the best accuracy, requiring less than 100 annotated samples to realise close to minimal error.
arXiv Detail & Related papers (2022-09-01T09:25:22Z) - Self-Paced Contrastive Learning for Semi-supervisedMedical Image
Segmentation with Meta-labels [6.349708371894538]
We propose to adapt contrastive learning to work with meta-label annotations.
We use the meta-labels for pre-training the image encoder as well as to regularize a semi-supervised training.
Results on three different medical image segmentation datasets show that our approach highly boosts the performance of a model trained on a few scans.
arXiv Detail & Related papers (2021-07-29T04:30:46Z) - Visual Distant Supervision for Scene Graph Generation [66.10579690929623]
Scene graph models usually require supervised learning on large quantities of labeled data with intensive human annotation.
We propose visual distant supervision, a novel paradigm of visual relation learning, which can train scene graph models without any human-labeled data.
Comprehensive experimental results show that our distantly supervised model outperforms strong weakly supervised and semi-supervised baselines.
arXiv Detail & Related papers (2021-03-29T06:35:24Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
We propose ATSO, an asynchronous version of teacher-student optimization.
ATSO partitions the unlabeled data into two subsets and alternately uses one subset to fine-tune the model and updates the label on the other subset.
We evaluate ATSO on two popular medical image segmentation datasets and show its superior performance in various semi-supervised settings.
arXiv Detail & Related papers (2020-06-24T04:05:12Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.