Machine learning-based clinical prediction modeling -- A practical guide
for clinicians
- URL: http://arxiv.org/abs/2006.15069v1
- Date: Tue, 23 Jun 2020 20:11:37 GMT
- Title: Machine learning-based clinical prediction modeling -- A practical guide
for clinicians
- Authors: Julius M. Kernbach, Victor E. Staartjes
- Abstract summary: The number of manuscripts related to machine learning or artificial intelligence has exponentially increased over the past years.
In the first section, we provide explanations on the general principles of machine learning.
In further sections, we review the importance of resampling, overfitting and model generalizability and strategies for model evaluation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the emerging era of big data, larger available clinical datasets and
computational advances have sparked a massive interest in machine
learning-based approaches. The number of manuscripts related to machine
learning or artificial intelligence has exponentially increased over the past
years. As analytical machine learning tools become readily available for
clinicians to use, the understanding of key concepts and the awareness of
analytical pitfalls are increasingly required for clinicians, investigators,
reviewers and editors, who even as experts in their clinical field, sometimes
find themselves insufficiently equipped to evaluate machine learning
methodologies. In the first section, we provide explanations on the general
principles of machine learning, as well as analytical steps required for
successful machine learning-based predictive modelling - which is the focus of
this series. In further sections, we review the importance of resampling,
overfitting and model generalizability as well as feature reduction and
selection (Part II), strategies for model evaluation, reporting and discussion
of common caveats and other points of significance (Part III), as well as offer
a practical guide to classification (Part IV) and regression modelling (Part
V), with a complete coding pipeline. Methodological rigor and clarity as well
as understanding of the underlying reasoning of the internal workings of a
machine learning approach are required, otherwise predictive applications
despite being strong analytical tools are not well accepted into the clinical
routine. Going forward, machine learning and artificial intelligence shape and
influence modern medicine across disciplines including the field of
neurosurgery.
Related papers
- Machine Learning Innovations in CPR: A Comprehensive Survey on Enhanced Resuscitation Techniques [52.71395121577439]
This survey paper explores the transformative role of Machine Learning (ML) and Artificial Intelligence (AI) in Cardiopulmonary Resuscitation (CPR)
It highlights the impact of predictive modeling, AI-enhanced devices, and real-time data analysis in improving resuscitation outcomes.
The paper provides a comprehensive overview, classification, and critical analysis of current applications, challenges, and future directions in this emerging field.
arXiv Detail & Related papers (2024-11-03T18:01:50Z) - Causal Inference Tools for a Better Evaluation of Machine Learning [0.0]
We introduce key statistical methods such as Ordinary Least Squares (OLS) regression, Analysis of Variance (ANOVA) and logistic regression.
The document serves as a guide for researchers and practitioners, detailing how these techniques can provide deeper insights into model behavior, performance, and fairness.
arXiv Detail & Related papers (2024-10-02T10:03:29Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - Introduction to Machine Learning for Physicians: A Survival Guide for
Data Deluge [9.152759278163954]
Modern research fields increasingly rely on collecting and analysing massive, often unstructured, and unwieldy datasets.
There is growing interest in machine learning and artificial intelligence applications that can harness this data deluge'
This broad nontechnical overview provides a gentle introduction to machine learning with a specific focus on medical and biological applications.
arXiv Detail & Related papers (2022-12-23T13:08:59Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
We present a machine learning framework, AutoPrognosis 2.0, to develop diagnostic and prognostic models.
We provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank.
Our risk score has been implemented as a web-based decision support tool and can be publicly accessed by patients and clinicians worldwide.
arXiv Detail & Related papers (2022-10-21T16:31:46Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - Demystifying Deep Learning Models for Retinal OCT Disease Classification
using Explainable AI [0.6117371161379209]
The adoption of various deep learning techniques is quite common as well as effective, and its statement is equally true when it comes to implementing it into the retina Optical Coherence Tomography sector.
These techniques have the black box characteristics that prevent the medical professionals to completely trust the results generated from them.
This paper proposes a self-developed CNN model which is comparatively smaller and simpler along with the use of Lime that introduces Explainable AI to the study.
arXiv Detail & Related papers (2021-11-06T13:54:07Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Key Technology Considerations in Developing and Deploying Machine
Learning Models in Clinical Radiology Practice [0.0]
We propose a list of key considerations that machine learning researchers must recognize and address to make their models accurate, robust, and usable in practice.
Namely, we discuss: insufficient training data, decentralized datasets, high cost of annotations, ambiguous ground truth, imbalance in class representation, asymmetric misclassification costs, relevant performance metrics, generalization of models to unseen datasets, model decay, adversarial attacks, explainability, fairness and bias, and clinical validation.
arXiv Detail & Related papers (2021-02-03T09:53:43Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.