Demystifying Deep Learning Models for Retinal OCT Disease Classification
using Explainable AI
- URL: http://arxiv.org/abs/2111.03890v1
- Date: Sat, 6 Nov 2021 13:54:07 GMT
- Title: Demystifying Deep Learning Models for Retinal OCT Disease Classification
using Explainable AI
- Authors: Tasnim Sakib Apon, Mohammad Mahmudul Hasan, Abrar Islam, MD. Golam
Rabiul Alam
- Abstract summary: The adoption of various deep learning techniques is quite common as well as effective, and its statement is equally true when it comes to implementing it into the retina Optical Coherence Tomography sector.
These techniques have the black box characteristics that prevent the medical professionals to completely trust the results generated from them.
This paper proposes a self-developed CNN model which is comparatively smaller and simpler along with the use of Lime that introduces Explainable AI to the study.
- Score: 0.6117371161379209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the world of medical diagnostics, the adoption of various deep learning
techniques is quite common as well as effective, and its statement is equally
true when it comes to implementing it into the retina Optical Coherence
Tomography (OCT) sector, but (i)These techniques have the black box
characteristics that prevent the medical professionals to completely trust the
results generated from them (ii)Lack of precision of these methods restricts
their implementation in clinical and complex cases (iii)The existing works and
models on the OCT classification are substantially large and complicated and
they require a considerable amount of memory and computational power, reducing
the quality of classifiers in real-time applications. To meet these problems,
in this paper a self-developed CNN model has been proposed which is
comparatively smaller and simpler along with the use of Lime that introduces
Explainable AI to the study and helps to increase the interpretability of the
model. This addition will be an asset to the medical experts for getting major
and detailed information and will help them in making final decisions and will
also reduce the opacity and vulnerability of the conventional deep learning
models.
Related papers
- Analysis of Modern Computer Vision Models for Blood Cell Classification [49.1574468325115]
This study uses state-of-the-art architectures, including MaxVit, EfficientVit, EfficientNet, EfficientNetV2, and MobileNetV3 to achieve rapid and accurate results.
Our approach not only addresses the speed and accuracy concerns of traditional techniques but also explores the applicability of innovative deep learning models in hematological analysis.
arXiv Detail & Related papers (2024-06-30T16:49:29Z) - Structured Model Pruning for Efficient Inference in Computational Pathology [2.9687381456164004]
We develop a methodology for pruning the widely used U-Net-style architectures in biomedical imaging.
We empirically demonstrate that pruning can compress models by at least 70% with a negligible drop in performance.
arXiv Detail & Related papers (2024-04-12T22:05:01Z) - Beyond Multiple Instance Learning: Full Resolution All-In-Memory End-To-End Pathology Slide Modeling [1.063200750366449]
We propose a novel approach to jointly train both a tile encoder and a slide-aggregator fully in memory and end-to-end at high-resolution.
While more computationally expensive, detailed quantitative validation shows promise for large-scale pre-training and fine-tuning of pathology foundation models.
arXiv Detail & Related papers (2024-03-07T19:28:58Z) - Less is more: Ensemble Learning for Retinal Disease Recognition Under
Limited Resources [12.119196313470887]
This paper introduces a novel ensemble learning mechanism designed for recognizing retinal diseases under limited resources.
The mechanism leverages insights from multiple pre-trained models, facilitating the transfer and adaptation of their knowledge to Retinal OCT images.
arXiv Detail & Related papers (2024-02-15T06:58:25Z) - Explainable AI in Diagnosing and Anticipating Leukemia Using Transfer
Learning Method [0.0]
This research paper focuses on Acute Lymphoblastic Leukemia (ALL), a form of blood cancer prevalent in children and teenagers.
It proposes an automated detection approach using computer-aided diagnostic (CAD) models, leveraging deep learning techniques.
The proposed method achieved an impressive 98.38% accuracy, outperforming other tested models.
arXiv Detail & Related papers (2023-12-01T10:37:02Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Learning Interpretable Microscopic Features of Tumor by Multi-task
Adversarial CNNs To Improve Generalization [1.7371375427784381]
Existing CNN models act as black boxes, not ensuring to the physicians that important diagnostic features are used by the model.
Here we show that our architecture, by learning end-to-end an uncertainty-based weighting combination of multi-task and adversarial losses, is encouraged to focus on pathology features.
Our results on breast lymph node tissue show significantly improved generalization in the detection of tumorous tissue, with best average AUC 0.89 (0.01) against the baseline AUC 0.86 (0.005)
arXiv Detail & Related papers (2020-08-04T12:10:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.