論文の概要: Enhancement of a CNN-Based Denoiser Based on Spatial and Spectral
Analysis
- arxiv url: http://arxiv.org/abs/2006.15517v1
- Date: Sun, 28 Jun 2020 05:25:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-16 03:02:11.716244
- Title: Enhancement of a CNN-Based Denoiser Based on Spatial and Spectral
Analysis
- Title(参考訳): 空間・スペクトル解析に基づくcnnベースのデノイザーの強化
- Authors: Rui Zhao, Kin-Man Lam, Daniel P.K. Lun
- Abstract要約: 本稿では,複数のノイズで劣化した画像を1つのモデルで復元する離散ウェーブレットデノイズCNN(WDnCNN)を提案する。
この問題に対処するために、周波数スペクトルの異なる部分から係数を正規化するバンド正規化モジュール(BNM)を提案する。
提案したWDnCNNを評価し,他の最先端のデノイザと比較した。
- 参考スコア(独自算出の注目度): 23.11994688706024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural network (CNN)-based image denoising methods have been
widely studied recently, because of their high-speed processing capability and
good visual quality. However, most of the existing CNN-based denoisers learn
the image prior from the spatial domain, and suffer from the problem of
spatially variant noise, which limits their performance in real-world image
denoising tasks. In this paper, we propose a discrete wavelet denoising CNN
(WDnCNN), which restores images corrupted by various noise with a single model.
Since most of the content or energy of natural images resides in the
low-frequency spectrum, their transformed coefficients in the frequency domain
are highly imbalanced. To address this issue, we present a band normalization
module (BNM) to normalize the coefficients from different parts of the
frequency spectrum. Moreover, we employ a band discriminative training (BDT)
criterion to enhance the model regression. We evaluate the proposed WDnCNN, and
compare it with other state-of-the-art denoisers. Experimental results show
that WDnCNN achieves promising performance in both synthetic and real noise
reduction, making it a potential solution to many practical image denoising
applications.
- Abstract(参考訳): 畳み込みニューラルネットワーク(cnn)に基づく画像デノイジング手法は,その高速処理能力と視覚品質の良さから近年広く研究されている。
しかし、既存のCNNベースのデノイザの多くは、空間的領域からイメージを学習し、空間的変動ノイズの問題に悩まされ、実際の画像デノイズタスクにおけるパフォーマンスが制限される。
本稿では,複数のノイズで劣化した画像を1つのモデルで復元する離散ウェーブレットデノイングCNN(WDnCNN)を提案する。
自然画像の内容やエネルギーのほとんどが低周波スペクトルに存在するため、周波数領域の変換係数は高度に不均衡である。
この問題に対処するために、周波数スペクトルの異なる部分から係数を正規化するバンド正規化モジュール(BNM)を提案する。
さらに,bdt(band discriminative training)基準を用いてモデルの回帰性を高める。
提案したWDnCNNを評価し,他の最先端デノイザと比較した。
実験結果から,WDnCNNは合成ノイズ低減と実雑音低減の両面で有望な性能を達成し,多くの実用的な画像復号化アプリケーションに対する潜在的な解決策となることが示された。
関連論文リスト
- Hyperspectral Image Denoising via Self-Modulating Convolutional Neural
Networks [15.700048595212051]
相関スペクトルと空間情報を利用した自己変調畳み込みニューラルネットワークを提案する。
モデルの中心には新しいブロックがあり、隣り合うスペクトルデータに基づいて、ネットワークが適応的に特徴を変換することができる。
合成データと実データの両方の実験解析により,提案したSM-CNNは,他の最先端HSI復調法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-09-15T06:57:43Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
十分なノイズ処理は、画像処理にとって重要な第一歩であることが多い。
ディープニューラルネットワーク(DNN)は画像のノイズ化に広く利用されている。
本研究では,タッカー低ランクテンソル近似に基づく自己教師付き画像復調フレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-26T14:11:05Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
深部畳み込みニューラルネットワーク(Deep Convolutional Neural Network, CNN)は、正確な構造情報を自動マイニングすることで、画像の復調に使用される。
動的畳み込みブロック(DCB)、2つのカスケードウェーブレット変換および拡張ブロック(WEB)、残留ブロック(RB)の3段階を経由した、MWDCNNによるCNNの多段階化を提案する。
論文 参考訳(メタデータ) (2022-09-26T03:28:23Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
暗黙的ニューラル表現(INR)のアーキテクチャ的帰納的バイアスを利用した代替的認知戦略を提案する。
提案手法は,低雑音シナリオや実雑音シナリオの広い範囲において,既存のゼロショット復調手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-05T12:46:36Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
本研究では,残差畳み込み層の局所モデリング能力とスウィントランスブロックの非局所モデリング能力を組み込むスウィンコンブブロックを提案する。
トレーニングデータ合成のために,異なる種類のノイズを考慮した実用的なノイズ劣化モデルの設計を行う。
AGWN除去と実画像復号化の実験は、新しいネットワークアーキテクチャ設計が最先端の性能を達成することを実証している。
論文 参考訳(メタデータ) (2022-03-24T18:11:31Z) - Exploring Inter-frequency Guidance of Image for Lightweight Gaussian
Denoising [1.52292571922932]
本稿では,周波数帯域を低域から高域に漸進的に洗練するために,IGNetと呼ばれる新しいネットワークアーキテクチャを提案する。
この設計では、より周波数間先行と情報を利用するため、モデルサイズは軽量化でき、競争結果も維持できる。
論文 参考訳(メタデータ) (2021-12-22T10:35:53Z) - Image Denoising using Attention-Residual Convolutional Neural Networks [0.0]
本稿では,学習に基づく新たな非盲検手法であるAttention Residual Convolutional Neural Network (ARCNN)を提案し,その拡張としてFlexible Attention Residual Convolutional Neural Network (FARCNN)を提案する。
ARCNNはガウス語とポアソン語で約0.44dBと0.96dBの平均PSNR結果を達成し、FARCNNはARCNNに比べて若干パフォーマンスが悪くても非常に一貫した結果を示した。
論文 参考訳(メタデータ) (2021-01-19T16:37:57Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
Neighbor2Neighborを提示し、ノイズの多い画像のみで効果的な画像消音モデルをトレーニングします。
ネットワークのトレーニングに使用される入力とターゲットは、同じノイズ画像からサブサンプリングされた画像である。
デノイジングネットワークは、第1段階で生成されたサブサンプルトレーニングペアで訓練され、提案された正規化器は、より良いパフォーマンスのための追加の損失として訓練される。
論文 参考訳(メタデータ) (2021-01-08T02:03:25Z) - Progressive Training of Multi-level Wavelet Residual Networks for Image
Denoising [80.10533234415237]
本稿では,マルチレベルウェーブレット残差ネットワーク(MWRN)アーキテクチャと,画像復調性能向上のためのプログレッシブトレーニング手法を提案する。
人工ノイズ画像と実世界のノイズ画像の両方で実験したところ、PT-MWRNは最先端のノイズ評価法に対して良好に機能することがわかった。
論文 参考訳(メタデータ) (2020-10-23T14:14:00Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
ブラインド画像のデノイングはコンピュータビジョンにおいて重要な問題であるが、非常に難しい問題である。
本稿では,ノイズ推定と画像デノーミングを併用した新しい変分推論手法を提案する。
論文 参考訳(メタデータ) (2019-08-29T15:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。