Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning
- URL: http://arxiv.org/abs/2006.15691v2
- Date: Sun, 30 Aug 2020 16:51:39 GMT
- Title: Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning
- Authors: Yuankai Huo, Jinzheng Cai, Chi-Tung Cheng, Ashwin Raju, Ke Yan,
Bennett A. Landman, Jing Xiao, Le Lu, Chien-Hung Liao, Adam P. Harrison
- Abstract summary: We propose a fully-automated and multi-stage liver tumor characterization framework for dynamic contrast computed tomography (CT)
Our system comprises four sequential processes of tumor proposal detection, tumor harvesting, primary tumor site selection, and deep texture-based tumor characterization.
- Score: 24.633802585888812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-invasive radiological-based lesion characterization and identification,
e.g., to differentiate cancer subtypes, has long been a major aim to enhance
oncological diagnosis and treatment procedures. Here we study a specific
population of human subjects, with the hope of reducing the need for invasive
surgical biopsies of liver cancer patients, which can cause many harmful
side-effects. To this end, we propose a fully-automated and multi-stage liver
tumor characterization framework designed for dynamic contrast computed
tomography (CT). Our system comprises four sequential processes of tumor
proposal detection, tumor harvesting, primary tumor site selection, and deep
texture-based tumor characterization. Our main contributions are that, (1) we
propose a 3D non-isotropic anchor-free detection method for liver lesions; (2)
we present and validate spatially adaptivedeep texture (SaDT) learning, which
allows for more precise characterization of liver lesions; (3) using a
semi-automatic process, we bootstrap off of 200 gold standard annotations to
curate another 1001 patients. Experimental evaluations demonstrate that our new
data curation strategy, combined with the SaDT deep dynamic texture analysis,
can effectively improve the mean F1 scores by >8.6% compared with baselines, in
differentiating four major liver lesion types. Our F1 score of (hepatocellular
carcinoma versus remaining subclasses) is 0.763, which is higher than reported
human observer performance using dynamic CT and comparable to an advanced
magnetic resonance imagery protocol. Apart from demonstrating the benefits of
our data curation approach and physician-inspired workflow, these results also
indicate that analyzing texture features, instead of standard object-based
analysis, is a promising strategy for lesion differentiation.
Related papers
- Advanced Hybrid Deep Learning Model for Enhanced Classification of Osteosarcoma Histopathology Images [0.0]
This study focuses on osteosarcoma (OS), the most common bone cancer in children and adolescents, which affects the long bones of the arms and legs.
We propose a novel hybrid model that combines convolutional neural networks (CNN) and vision transformers (ViT) to improve diagnostic accuracy for OS.
The model achieved an accuracy of 99.08%, precision of 99.10%, recall of 99.28%, and an F1-score of 99.23%.
arXiv Detail & Related papers (2024-10-29T13:54:08Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
This study presents an innovative method for Alzheimer's disease diagnosis using 3D MRI designed to enhance the explainability of model decisions.
Our approach adopts a soft attention mechanism, enabling 2D CNNs to extract volumetric representations.
With voxel-level precision, our method identified which specific areas are being paid attention to, identifying these predominant brain regions.
arXiv Detail & Related papers (2024-07-02T16:44:00Z) - Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
This study introduces a novel data augmentation technique, aimed at automating spine tumor segmentation and localization through AI approaches.
A Convolutional Neural Network (CNN) architecture is employed for tumor classification. 3D vertebral segmentation and labeling techniques are used to help pinpoint the exact location of the tumors in the lumbar spine.
Results indicate a remarkable performance, with 99% accuracy for tumor segmentation, 98% accuracy for tumor classification, and 99% accuracy for tumor localization achieved with the proposed approach.
arXiv Detail & Related papers (2024-05-07T05:55:50Z) - Exploiting Liver CT scans in Colorectal Carcinoma genomics mutation
classification [0.0]
We propose the first DeepLearning-based exploration, to our knowledge, of such classification approach from the patient medical imaging.
Our method is able to identify CRC RAS mutation family from CT images with 0.73 F1 score.
arXiv Detail & Related papers (2024-01-25T14:40:58Z) - Semi-supervised ViT knowledge distillation network with style transfer
normalization for colorectal liver metastases survival prediction [1.283897253352624]
We propose an end-to-end approach for automated prognosis prediction using histology slides stained with H&E and HPS.
We first employ a Generative Adversarial Network (GAN) for slide normalization to reduce staining variations and improve the overall quality of the images that are used as input to our prediction pipeline.
We exploit the extracted features for the metastatic nodules and surrounding tissue to train a prognosis model. In parallel, we train a vision Transformer (ViT) in a knowledge distillation framework to replicate and enhance the performance of the prognosis prediction.
arXiv Detail & Related papers (2023-11-17T03:32:11Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
This study introduces a novel ensemble approach using ONet and modified versions of UNet.
Data augmentation ensures robustness and accuracy across different scanning protocols.
Results indicate that this advanced ensemble approach offers promising prospects for enhanced diagnostic accuracy.
arXiv Detail & Related papers (2023-08-14T15:29:32Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - 3D Structural Analysis of the Optic Nerve Head to Robustly Discriminate
Between Papilledema and Optic Disc Drusen [44.754910718620295]
We developed a deep learning algorithm to identify major tissue structures of the optic nerve head (ONH) in 3D optical coherence tomography ( OCT) scans.
A classification algorithm was designed using 150 OCT volumes to perform 3-class classifications (1: ODD, 2: papilledema, 3: healthy) strictly from their drusen and prelamina swelling scores.
Our AI approach accurately discriminated ODD from papilledema, using a single OCT scan.
arXiv Detail & Related papers (2021-12-18T17:05:53Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.