Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection
- URL: http://arxiv.org/abs/2004.10159v1
- Date: Tue, 21 Apr 2020 17:07:18 GMT
- Title: Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection
- Authors: Marcel Bengs and Stephan Westermann and Nils Gessert and Dennis Eggert
and Andreas O. H. Gerstner and Nina A. Mueller and Christian Betz and Wiebke
Laffers and Alexander Schlaefer
- Abstract summary: Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
- Score: 49.32653090178743
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early detection of head and neck tumors is crucial for patient survival.
Often, diagnoses are made based on endoscopic examination of the larynx
followed by biopsy and histological analysis, leading to a high inter-observer
variability due to subjective assessment. In this regard, early non-invasive
diagnostics independent of the clinician would be a valuable tool. A recent
study has shown that hyperspectral imaging (HSI) can be used for non-invasive
detection of head and neck tumors, as precancerous or cancerous lesions show
specific spectral signatures that distinguish them from healthy tissue.
However, HSI data processing is challenging due to high spectral variations,
various image interferences, and the high dimensionality of the data.
Therefore, performance of automatic HSI analysis has been limited and so far,
mostly ex-vivo studies have been presented with deep learning. In this work, we
analyze deep learning techniques for in-vivo hyperspectral laryngeal cancer
detection. For this purpose we design and evaluate convolutional neural
networks (CNNs) with 2D spatial or 3D spatio-spectral convolutions combined
with a state-of-the-art Densenet architecture. For evaluation, we use an
in-vivo data set with HSI of the oral cavity or oropharynx. Overall, we present
multiple deep learning techniques for in-vivo laryngeal cancer detection based
on HSI and we show that jointly learning from the spatial and spectral domain
improves classification accuracy notably. Our 3D spatio-spectral Densenet
achieves an average accuracy of 81%.
Related papers
- Advanced Hybrid Deep Learning Model for Enhanced Classification of Osteosarcoma Histopathology Images [0.0]
This study focuses on osteosarcoma (OS), the most common bone cancer in children and adolescents, which affects the long bones of the arms and legs.
We propose a novel hybrid model that combines convolutional neural networks (CNN) and vision transformers (ViT) to improve diagnostic accuracy for OS.
The model achieved an accuracy of 99.08%, precision of 99.10%, recall of 99.28%, and an F1-score of 99.23%.
arXiv Detail & Related papers (2024-10-29T13:54:08Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
Masked slice diffusion for super-resolution exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens.
We focus on the application of SliceR to stimulated histology (SRH), characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning.
arXiv Detail & Related papers (2024-04-15T02:41:55Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
The article introduces an efficient residual cross-spatial attention guided inception U-Net (RCA-IUnet) model with minimal training parameters for tumor segmentation.
The RCA-IUnet model follows U-Net topology with residual inception depth-wise separable convolution and hybrid pooling layers.
Cross-spatial attention filters are added to suppress the irrelevant features and focus on the target structure.
arXiv Detail & Related papers (2021-08-05T10:35:06Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level.
In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges.
By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs.
arXiv Detail & Related papers (2021-07-12T09:04:20Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
We propose a fully-automated and multi-stage liver tumor characterization framework for dynamic contrast computed tomography (CT)
Our system comprises four sequential processes of tumor proposal detection, tumor harvesting, primary tumor site selection, and deep texture-based tumor characterization.
arXiv Detail & Related papers (2020-06-28T19:55:34Z) - Detecting Scatteredly-Distributed, Small, andCritically Important
Objects in 3D OncologyImaging via Decision Stratification [23.075722503902714]
We focus on the detection and segmentation of oncology-significant (or suspicious cancer metastasized) lymph nodes.
We propose a divide-and-conquer decision stratification approach that divides OSLNs into tumor-proximal and tumor-distal categories.
We present a novel global-local network (GLNet) that combines high-level lesion characteristics with features learned from localized 3D image patches.
arXiv Detail & Related papers (2020-05-27T23:12:11Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.