Kendall transformation: a robust representation of continuous data for
information theory
- URL: http://arxiv.org/abs/2006.15991v2
- Date: Mon, 3 Jan 2022 19:54:16 GMT
- Title: Kendall transformation: a robust representation of continuous data for
information theory
- Authors: Miron Bartosz Kursa
- Abstract summary: Kendall transformation is a conversion of an ordered feature into a vector of pairwise order relations between individual values.
This way, it preserves ranking of observations and represents it in a categorical form.
Many approaches of information theory can be directly applied to Kendall-transformed continuous data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Kendall transformation is a conversion of an ordered feature into a vector of
pairwise order relations between individual values. This way, it preserves
ranking of observations and represents it in a categorical form.
Such transformation allows for generalisation of methods requiring strictly
categorical input, especially in the limit of small number of observations,
when discretisation becomes problematic. In particular, many approaches of
information theory can be directly applied to Kendall-transformed continuous
data without relying on differential entropy or any additional parameters.
Moreover, by filtering information to this contained in ranking, Kendall
transformation leads to a better robustness at a reasonable cost of dropping
sophisticated interactions which are anyhow unlikely to be correctly estimated.
In bivariate analysis, Kendall transformation can be related to popular
non-parametric methods, showing the soundness of the approach. The paper also
demonstrates its efficiency in multivariate problems, as well as provides an
example analysis of a real-world data.
Related papers
- Unsupervised Representation Learning from Sparse Transformation Analysis [79.94858534887801]
We propose to learn representations from sequence data by factorizing the transformations of the latent variables into sparse components.
Input data are first encoded as distributions of latent activations and subsequently transformed using a probability flow model.
arXiv Detail & Related papers (2024-10-07T23:53:25Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - Enriching Disentanglement: From Logical Definitions to Quantitative Metrics [59.12308034729482]
Disentangling the explanatory factors in complex data is a promising approach for data-efficient representation learning.
We establish relationships between logical definitions and quantitative metrics to derive theoretically grounded disentanglement metrics.
We empirically demonstrate the effectiveness of the proposed metrics by isolating different aspects of disentangled representations.
arXiv Detail & Related papers (2023-05-19T08:22:23Z) - Bayesian Inference of Transition Matrices from Incomplete Graph Data
with a Topological Prior [1.2891210250935143]
We derive an analytically tractable Bayesian method that uses repeated interactions and a topological prior to infer transition matrices data-efficiently.
We show that it recovers the transition probabilities with higher accuracy and that it is robust even in cases when the knowledge of the topological constraint is partial.
arXiv Detail & Related papers (2022-10-27T13:17:47Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
We study how to discover interpretable equivariances from data.
Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes.
Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme.
arXiv Detail & Related papers (2022-04-07T17:59:19Z) - The Role of Mutual Information in Variational Classifiers [47.10478919049443]
We study the generalization error of classifiers relying on encodings trained on the cross-entropy loss.
We derive bounds to the generalization error showing that there exists a regime where the generalization error is bounded by the mutual information.
arXiv Detail & Related papers (2020-10-22T12:27:57Z) - Information Theory Measures via Multidimensional Gaussianization [7.788961560607993]
Information theory is an outstanding framework to measure uncertainty, dependence and relevance in data and systems.
It has several desirable properties for real world applications.
However, obtaining information from multidimensional data is a challenging problem due to the curse of dimensionality.
arXiv Detail & Related papers (2020-10-08T07:22:16Z) - Quantitative Understanding of VAE as a Non-linearly Scaled Isometric
Embedding [52.48298164494608]
Variational autoencoder (VAE) estimates the posterior parameters of latent variables corresponding to each input data.
This paper provides a quantitative understanding of VAE property through the differential geometric and information-theoretic interpretations of VAE.
arXiv Detail & Related papers (2020-07-30T02:37:46Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - Sparse Generalized Canonical Correlation Analysis: Distributed
Alternating Iteration based Approach [18.93565942407577]
Sparse canonical correlation analysis (CCA) is a useful statistical tool to detect latent information with sparse structures.
We propose a generalized canonical correlation analysis (GCCA), which could detect the latent relations of multiview data with sparse structures.
arXiv Detail & Related papers (2020-04-23T05:53:48Z) - Learning Discrete Structured Representations by Adversarially Maximizing
Mutual Information [39.87273353895564]
We propose learning discrete structured representations from unlabeled data by maximizing the mutual information between a structured latent variable and a target variable.
Our key technical contribution is an adversarial objective that can be used to tractably estimate mutual information assuming only the feasibility of cross entropy calculation.
We apply our model on document hashing and show that it outperforms current best baselines based on discrete and vector quantized variational autoencoders.
arXiv Detail & Related papers (2020-04-08T13:31:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.