Information Theory Measures via Multidimensional Gaussianization
- URL: http://arxiv.org/abs/2010.03807v2
- Date: Wed, 25 Nov 2020 10:23:45 GMT
- Title: Information Theory Measures via Multidimensional Gaussianization
- Authors: Valero Laparra, J. Emmanuel Johnson, Gustau Camps-Valls, Raul
Santos-Rodr\'iguez, Jesus Malo
- Abstract summary: Information theory is an outstanding framework to measure uncertainty, dependence and relevance in data and systems.
It has several desirable properties for real world applications.
However, obtaining information from multidimensional data is a challenging problem due to the curse of dimensionality.
- Score: 7.788961560607993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information theory is an outstanding framework to measure uncertainty,
dependence and relevance in data and systems. It has several desirable
properties for real world applications: it naturally deals with multivariate
data, it can handle heterogeneous data types, and the measures can be
interpreted in physical units. However, it has not been adopted by a wider
audience because obtaining information from multidimensional data is a
challenging problem due to the curse of dimensionality. Here we propose an
indirect way of computing information based on a multivariate Gaussianization
transform. Our proposal mitigates the difficulty of multivariate density
estimation by reducing it to a composition of tractable (marginal) operations
and simple linear transformations, which can be interpreted as a particular
deep neural network. We introduce specific Gaussianization-based methodologies
to estimate total correlation, entropy, mutual information and Kullback-Leibler
divergence. We compare them to recent estimators showing the accuracy on
synthetic data generated from different multivariate distributions. We made the
tools and datasets publicly available to provide a test-bed to analyze future
methodologies. Results show that our proposal is superior to previous
estimators particularly in high-dimensional scenarios; and that it leads to
interesting insights in neuroscience, geoscience, computer vision, and machine
learning.
Related papers
- You are out of context! [0.0]
New data can act as forces stretching, compressing, or twisting the geometric relationships learned by a model.
We propose a novel drift detection methodology for machine learning (ML) models based on the concept of ''deformation'' in the vector space representation of data.
arXiv Detail & Related papers (2024-11-04T10:17:43Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Unsupervised Anomaly and Change Detection with Multivariate
Gaussianization [8.508880949780893]
Anomaly detection is a challenging problem given the high-dimensionality of the data.
We propose an unsupervised method for detecting anomalies and changes in remote sensing images.
We show the efficiency of the method in experiments involving both anomaly detection and change detection.
arXiv Detail & Related papers (2022-04-12T10:52:33Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
We study how to discover interpretable equivariances from data.
Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes.
Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme.
arXiv Detail & Related papers (2022-04-07T17:59:19Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Multimodal Data Fusion in High-Dimensional Heterogeneous Datasets via
Generative Models [16.436293069942312]
We are interested in learning probabilistic generative models from high-dimensional heterogeneous data in an unsupervised fashion.
We propose a general framework that combines disparate data types through the exponential family of distributions.
The proposed algorithm is presented in detail for the commonly encountered heterogeneous datasets with real-valued (Gaussian) and categorical (multinomial) features.
arXiv Detail & Related papers (2021-08-27T18:10:31Z) - Scalable Vector Gaussian Information Bottleneck [19.21005180893519]
We study a variation of the problem, called scalable information bottleneck, in which the encoder outputs multiple descriptions of the observation.
We derive a variational inference type algorithm for general sources with unknown distribution; and show means of parametrizing it using neural networks.
arXiv Detail & Related papers (2021-02-15T12:51:26Z) - Gaussianizing the Earth: Multidimensional Information Measures for Earth
Data Analysis [9.464720193746395]
Information theory is an excellent framework for analyzing Earth system data.
It allows us to characterize uncertainty and redundancy, and is universally interpretable.
We show how information theory measures can be applied in various Earth system data analysis problems.
arXiv Detail & Related papers (2020-10-13T15:30:34Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
spectral-based subspace learning is a common data preprocessing step in many machine learning pipelines.
Most subspace learning methods do not take into consideration possible measurement inaccuracies or artifacts that can lead to data with high uncertainty.
arXiv Detail & Related papers (2020-09-01T15:08:23Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.