AB2CD: AI for Building Climate Damage Classification and Detection
- URL: http://arxiv.org/abs/2309.01066v1
- Date: Sun, 3 Sep 2023 03:37:04 GMT
- Title: AB2CD: AI for Building Climate Damage Classification and Detection
- Authors: Maximilian Nitsche (1 and 2), S. Karthik Mukkavilli (3), Niklas K\"uhl
(4 and 1), Thomas Brunschwiler (3) ((1) IBM Consulting, Germany, (2)
Karlsruhe Institute of Technology, Germany, (3) IBM Research - Europe,
Switzerland (4) University of Bayreuth, Germany)
- Abstract summary: We explore the implementation of deep learning techniques for precise building damage assessment in the context of natural hazards.
We tackle the challenges of generalization to novel disasters and regions while accounting for the influence of low-quality and noisy labels.
Our research findings showcase the potential and limitations of advanced AI solutions in enhancing the impact assessment of climate change-induced extreme weather events.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We explore the implementation of deep learning techniques for precise
building damage assessment in the context of natural hazards, utilizing remote
sensing data. The xBD dataset, comprising diverse disaster events from across
the globe, serves as the primary focus, facilitating the evaluation of deep
learning models. We tackle the challenges of generalization to novel disasters
and regions while accounting for the influence of low-quality and noisy labels
inherent in natural hazard data. Furthermore, our investigation quantitatively
establishes that the minimum satellite imagery resolution essential for
effective building damage detection is 3 meters and below 1 meter for
classification using symmetric and asymmetric resolution perturbation analyses.
To achieve robust and accurate evaluations of building damage detection and
classification, we evaluated different deep learning models with residual,
squeeze and excitation, and dual path network backbones, as well as ensemble
techniques. Overall, the U-Net Siamese network ensemble with F-1 score of 0.812
performed the best against the xView2 challenge benchmark. Additionally, we
evaluate a Universal model trained on all hazards against a flood expert model
and investigate generalization gaps across events, and out of distribution from
field data in the Ahr Valley. Our research findings showcase the potential and
limitations of advanced AI solutions in enhancing the impact assessment of
climate change-induced extreme weather events, such as floods and hurricanes.
These insights have implications for disaster impact assessment in the face of
escalating climate challenges.
Related papers
- Generalizable Disaster Damage Assessment via Change Detection with Vision Foundation Model [17.016411785224317]
We present DAVI (Disaster Assessment with VIsion foundation model), which overcomes domain disparities and detects structural damage without requiring ground-truth labels of the target region.
DAVI integrates task-specific knowledge from a model trained on source regions with an image segmentation foundation model to generate pseudo labels of possible damage in the target region.
It then employs a two-stage refinement process, targeting both the pixel and overall image, to more accurately pinpoint changes in disaster-struck areas.
arXiv Detail & Related papers (2024-06-12T09:21:28Z) - Towards Efficient Disaster Response via Cost-effective Unbiased Class Rate Estimation through Neyman Allocation Stratified Sampling Active Learning [11.697034536189094]
We present an innovative algorithm that constructs Neyman stratified random sampling trees for binary classification.
Our findings demonstrate that our method surpasses both passive and conventional active learning techniques.
It effectively addresses the'sampling bias' challenge in traditional active learning strategies.
arXiv Detail & Related papers (2024-05-28T01:34:35Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - The RoboDepth Challenge: Methods and Advancements Towards Robust Depth Estimation [97.63185634482552]
We summarize the winning solutions from the RoboDepth Challenge.
The challenge was designed to facilitate and advance robust OoD depth estimation.
We hope this challenge could lay a solid foundation for future research on robust and reliable depth estimation.
arXiv Detail & Related papers (2023-07-27T17:59:56Z) - Classification of structural building damage grades from multi-temporal
photogrammetric point clouds using a machine learning model trained on
virtual laser scanning data [58.720142291102135]
We present a novel approach to automatically assess multi-class building damage from real-world point clouds.
We use a machine learning model trained on virtual laser scanning (VLS) data.
The model yields high multi-target classification accuracies (overall accuracy: 92.0% - 95.1%)
arXiv Detail & Related papers (2023-02-24T12:04:46Z) - Interpretability in Convolutional Neural Networks for Building Damage
Classification in Satellite Imagery [0.0]
We use a dataset that includes labeled pre- and post-disaster satellite imagery to assess building damage on a per-building basis.
We train multiple convolutional neural networks (CNNs) to assess building damage on a per-building basis.
Our research seeks to computationally contribute to aiding in this ongoing and growing humanitarian crisis, heightened by anthropogenic climate change.
arXiv Detail & Related papers (2022-01-24T16:55:56Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
Building damage detection can be automated by applying computer vision techniques to satellite imagery.
Models must be robust to a shift in distribution between disaster imagery available for training and the images of the new event.
We argue that future work should focus on the OOD regime instead.
arXiv Detail & Related papers (2020-11-20T10:30:43Z) - Learning from Multimodal and Multitemporal Earth Observation Data for
Building Damage Mapping [17.324397643429638]
We have developed a global multisensor and multitemporal dataset for building damage mapping.
The global dataset contains high-resolution optical imagery and high-to-moderate-resolution multiband SAR data.
We defined a damage mapping framework for the semantic segmentation of damaged buildings based on a deep convolutional neural network algorithm.
arXiv Detail & Related papers (2020-09-14T05:04:19Z) - Comprehensive Semantic Segmentation on High Resolution UAV Imagery for
Natural Disaster Damage Assessment [0.26249027950824505]
We present a large-scale hurricane Michael dataset for visual perception in disaster scenarios.
We analyze state-of-the-art deep neural network models for semantic segmentation.
arXiv Detail & Related papers (2020-09-02T17:07:28Z) - MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos [74.22132693931145]
We study the problem of efficiently assessing building damage after natural disasters like hurricanes, floods or fires.
The first contribution is a new dataset, consisting of user-generated aerial videos from social media with annotations of instance-level building damage masks.
The second contribution is a new model, namely MSNet, which contains novel region proposal network designs.
arXiv Detail & Related papers (2020-06-30T02:23:05Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.