Machine learning fairness notions: Bridging the gap with real-world
applications
- URL: http://arxiv.org/abs/2006.16745v5
- Date: Tue, 7 Jun 2022 17:59:57 GMT
- Title: Machine learning fairness notions: Bridging the gap with real-world
applications
- Authors: Karima Makhlouf, Sami Zhioua, Catuscia Palamidessi
- Abstract summary: Fairness emerged as an important requirement to guarantee that Machine Learning predictive systems do not discriminate against specific individuals or entire sub-populations.
This paper is a survey that illustrates the subtleties between fairness notions through a large number of examples and scenarios.
- Score: 4.157415305926584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fairness emerged as an important requirement to guarantee that Machine
Learning (ML) predictive systems do not discriminate against specific
individuals or entire sub-populations, in particular, minorities. Given the
inherent subjectivity of viewing the concept of fairness, several notions of
fairness have been introduced in the literature. This paper is a survey that
illustrates the subtleties between fairness notions through a large number of
examples and scenarios. In addition, unlike other surveys in the literature, it
addresses the question of: which notion of fairness is most suited to a given
real-world scenario and why? Our attempt to answer this question consists in
(1) identifying the set of fairness-related characteristics of the real-world
scenario at hand, (2) analyzing the behavior of each fairness notion, and then
(3) fitting these two elements to recommend the most suitable fairness notion
in every specific setup. The results are summarized in a decision diagram that
can be used by practitioners and policymakers to navigate the relatively large
catalog of ML.
Related papers
- DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - Fairness in Matching under Uncertainty [78.39459690570531]
algorithmic two-sided marketplaces have drawn attention to the issue of fairness in such settings.
We axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits.
We design a linear programming framework to find fair utility-maximizing distributions over allocations.
arXiv Detail & Related papers (2023-02-08T00:30:32Z) - What-is and How-to for Fairness in Machine Learning: A Survey,
Reflection, and Perspective [13.124434298120494]
We review and reflect on various fairness notions previously proposed in machine learning literature.
We also consider the long-term impact that is induced by current prediction and decision.
This paper demonstrates the importance of matching the mission (which kind of fairness one would like to enforce) and the means (which spectrum of fairness analysis is of interest) to fulfill the intended purpose.
arXiv Detail & Related papers (2022-06-08T18:05:46Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - Fair Representation: Guaranteeing Approximate Multiple Group Fairness
for Unknown Tasks [17.231251035416648]
We study whether fair representation can be used to guarantee fairness for unknown tasks and for multiple fairness notions simultaneously.
We prove that, although fair representation might not guarantee fairness for all prediction tasks, it does guarantee fairness for an important subset of tasks.
arXiv Detail & Related papers (2021-09-01T17:29:11Z) - Fairness Through Counterfactual Utilities [0.0]
Group fairness definitions such as Demographic Parity and Equal Opportunity make assumptions about the underlying decision-problem that restrict them to classification problems.
We provide a generalized set of group fairness definitions that unambiguously extend to all machine learning environments.
arXiv Detail & Related papers (2021-08-11T16:51:27Z) - The zoo of Fairness metrics in Machine Learning [62.997667081978825]
In recent years, the problem of addressing fairness in Machine Learning (ML) and automatic decision-making has attracted a lot of attention.
A plethora of different definitions of fairness in ML have been proposed, that consider different notions of what is a "fair decision" in situations impacting individuals in the population.
In this work, we try to make some order out of this zoo of definitions.
arXiv Detail & Related papers (2021-06-01T13:19:30Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Fairness in Machine Learning [15.934879442202785]
We show how causal Bayesian networks can play an important role to reason about and deal with fairness.
We present a unified framework that encompasses methods that can deal with different settings and fairness criteria.
arXiv Detail & Related papers (2020-12-31T18:38:58Z) - Survey on Causal-based Machine Learning Fairness Notions [4.157415305926584]
This paper examines an exhaustive list of causal-based fairness notions and study their applicability in real-world scenarios.
As the majority of causal-based fairness notions are defined in terms of non-observable quantities, their deployment in practice requires to compute or estimate those quantities.
arXiv Detail & Related papers (2020-10-19T14:28:55Z) - Two Simple Ways to Learn Individual Fairness Metrics from Data [47.6390279192406]
Individual fairness is an intuitive definition of algorithmic fairness that addresses some of the drawbacks of group fairness.
The lack of a widely accepted fair metric for many ML tasks is the main barrier to broader adoption of individual fairness.
We show empirically that fair training with the learned metrics leads to improved fairness on three machine learning tasks susceptible to gender and racial biases.
arXiv Detail & Related papers (2020-06-19T23:47:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.