Fairness in Machine Learning
- URL: http://arxiv.org/abs/2012.15816v1
- Date: Thu, 31 Dec 2020 18:38:58 GMT
- Title: Fairness in Machine Learning
- Authors: Luca Oneto, Silvia Chiappa
- Abstract summary: We show how causal Bayesian networks can play an important role to reason about and deal with fairness.
We present a unified framework that encompasses methods that can deal with different settings and fairness criteria.
- Score: 15.934879442202785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning based systems are reaching society at large and in many
aspects of everyday life. This phenomenon has been accompanied by concerns
about the ethical issues that may arise from the adoption of these
technologies. ML fairness is a recently established area of machine learning
that studies how to ensure that biases in the data and model inaccuracies do
not lead to models that treat individuals unfavorably on the basis of
characteristics such as e.g. race, gender, disabilities, and sexual or
political orientation. In this manuscript, we discuss some of the limitations
present in the current reasoning about fairness and in methods that deal with
it, and describe some work done by the authors to address them. More
specifically, we show how causal Bayesian networks can play an important role
to reason about and deal with fairness, especially in complex unfairness
scenarios. We describe how optimal transport theory can be used to develop
methods that impose constraints on the full shapes of distributions
corresponding to different sensitive attributes, overcoming the limitation of
most approaches that approximate fairness desiderata by imposing constraints on
the lower order moments or other functions of those distributions. We present a
unified framework that encompasses methods that can deal with different
settings and fairness criteria, and that enjoys strong theoretical guarantees.
We introduce an approach to learn fair representations that can generalize to
unseen tasks. Finally, we describe a technique that accounts for legal
restrictions about the use of sensitive attributes.
Related papers
- Fair Few-shot Learning with Auxiliary Sets [53.30014767684218]
In many machine learning (ML) tasks, only very few labeled data samples can be collected, which can lead to inferior fairness performance.
In this paper, we define the fairness-aware learning task with limited training samples as the emphfair few-shot learning problem.
We devise a novel framework that accumulates fairness-aware knowledge across different meta-training tasks and then generalizes the learned knowledge to meta-test tasks.
arXiv Detail & Related papers (2023-08-28T06:31:37Z) - Fairness Explainability using Optimal Transport with Applications in
Image Classification [0.46040036610482665]
We propose a comprehensive approach to uncover the causes of discrimination in Machine Learning applications.
We leverage Wasserstein barycenters to achieve fair predictions and introduce an extension to pinpoint bias-associated regions.
This allows us to derive a cohesive system which uses the enforced fairness to measure each features influence emphon the bias.
arXiv Detail & Related papers (2023-08-22T00:10:23Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Individual Fairness under Uncertainty [26.183244654397477]
Algorithmic fairness is an established area in machine learning (ML) algorithms.
We propose an individual fairness measure and a corresponding algorithm that deal with the challenges of uncertainty arising from censorship in class labels.
We argue that this perspective represents a more realistic model of fairness research for real-world application deployment.
arXiv Detail & Related papers (2023-02-16T01:07:58Z) - Fairness in Matching under Uncertainty [78.39459690570531]
algorithmic two-sided marketplaces have drawn attention to the issue of fairness in such settings.
We axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits.
We design a linear programming framework to find fair utility-maximizing distributions over allocations.
arXiv Detail & Related papers (2023-02-08T00:30:32Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
It is important to guarantee that machine learning algorithms deployed in the real world do not result in unfairness or unintended social consequences.
We introduce FairCOCCO, a fairness measure built on cross-covariance operators on reproducing kernel Hilbert Spaces.
We empirically demonstrate consistent improvements against state-of-the-art techniques in balancing predictive power and fairness on real-world datasets.
arXiv Detail & Related papers (2022-11-11T11:28:46Z) - Fair Inference for Discrete Latent Variable Models [12.558187319452657]
Machine learning models, trained on data without due care, often exhibit unfair and discriminatory behavior against certain populations.
We develop a fair variational inference technique for the discrete latent variables, which is accomplished by including a fairness penalty on the variational distribution.
To demonstrate the generality of our approach and its potential for real-world impact, we then develop a special-purpose graphical model for criminal justice risk assessments.
arXiv Detail & Related papers (2022-09-15T04:54:21Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - Technical Challenges for Training Fair Neural Networks [62.466658247995404]
We conduct experiments on both facial recognition and automated medical diagnosis datasets using state-of-the-art architectures.
We observe that large models overfit to fairness objectives, and produce a range of unintended and undesirable consequences.
arXiv Detail & Related papers (2021-02-12T20:36:45Z) - Machine learning fairness notions: Bridging the gap with real-world
applications [4.157415305926584]
Fairness emerged as an important requirement to guarantee that Machine Learning predictive systems do not discriminate against specific individuals or entire sub-populations.
This paper is a survey that illustrates the subtleties between fairness notions through a large number of examples and scenarios.
arXiv Detail & Related papers (2020-06-30T13:01:06Z) - FairALM: Augmented Lagrangian Method for Training Fair Models with
Little Regret [42.66567001275493]
It is now accepted that because of biases in the datasets we present to the models, a fairness-oblivious training will lead to unfair models.
Here, we study mechanisms that impose fairness concurrently while training the model.
arXiv Detail & Related papers (2020-04-03T03:18:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.