論文の概要: Causality Learning: A New Perspective for Interpretable Machine Learning
- arxiv url: http://arxiv.org/abs/2006.16789v2
- Date: Fri, 17 Sep 2021 05:03:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-16 07:25:02.016425
- Title: Causality Learning: A New Perspective for Interpretable Machine Learning
- Title(参考訳): 因果性学習 : 解釈可能な機械学習の新しい展望
- Authors: Guandong Xu, Tri Dung Duong, Qian Li, Shaowu Liu, Xianzhi Wang
- Abstract要約: 解釈可能な機械学習は、現在、研究コミュニティで主要なトピックです。
本稿では,基礎的背景と重要な概念を用いた因果解析の概要を述べるとともに,直近の因果解析における因果解析手法を要約する。
- 参考スコア(独自算出の注目度): 15.556963808865918
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have witnessed the rapid growth of machine learning in a wide
range of fields such as image recognition, text classification, credit scoring
prediction, recommendation system, etc. In spite of their great performance in
different sectors, researchers still concern about the mechanism under any
machine learning (ML) techniques that are inherently black-box and becoming
more complex to achieve higher accuracy. Therefore, interpreting machine
learning model is currently a mainstream topic in the research community.
However, the traditional interpretable machine learning focuses on the
association instead of the causality. This paper provides an overview of causal
analysis with the fundamental background and key concepts, and then summarizes
most recent causal approaches for interpretable machine learning. The
evaluation techniques for assessing method quality, and open problems in causal
interpretability are also discussed in this paper.
- Abstract(参考訳): 近年,画像認識,テキスト分類,クレジットスコアリング予測,レコメンデーションシステムなど,幅広い分野における機械学習の急速な成長が観察されている。
異なる分野におけるその優れたパフォーマンスにもかかわらず、研究者は、本質的にブラックボックスであり、高い精度を達成するためにより複雑になるあらゆる機械学習(ml)技術の下でのメカニズムを依然として懸念している。
そのため、機械学習モデルの解釈は現在、研究コミュニティの主流となっている。
しかし、従来の解釈可能な機械学習は因果関係ではなく関連性に焦点を当てている。
本稿では,基礎的背景と重要な概念を用いた因果解析の概要を述べるとともに,直近の因果解析手法を要約する。
本稿では,手法品質の評価手法と因果解釈可能性に関するオープン問題についても論じる。
関連論文リスト
- Enhancing Generative Class Incremental Learning Performance with Model Forgetting Approach [50.36650300087987]
本研究は, ジェネレーティブ・クラス・インクリメンタル・ラーニング(GCIL, Generative Class Incremental Learning)への新たなアプローチを提案する。
我々は, 忘れる機構の統合により, 新たな知識獲得におけるモデルの性能が著しく向上することを発見した。
論文 参考訳(メタデータ) (2024-03-27T05:10:38Z) - Improving Prediction Performance and Model Interpretability through
Attention Mechanisms from Basic and Applied Research Perspectives [3.553493344868414]
この論文は著者の論文の要約に基づいている。
ディープラーニングモデルは、従来の機械学習モデルよりも予測性能がはるかに高い。
特定の予測プロセスの解釈や説明は依然として困難である。
論文 参考訳(メタデータ) (2023-03-24T16:24:08Z) - Statistical Foundation Behind Machine Learning and Its Impact on
Computer Vision [8.974457198386414]
本稿では、統計的学習における一様収束の原理を再考し、機械学習の基礎としてどのように機能するかを論じ、現在のディープラーニングアルゴリズムが解決している本質的な問題をよりよく理解しようと試みる。
コンピュータビジョンを機械学習の例として用いた議論は、近年の大規模データを活用して、表現学習に事前学習を行うことによる研究の傾向が、現実的に抽出可能な経験的損失と最終的に望まれるが、予測される損失との差を減らしていることを示している。
論文 参考訳(メタデータ) (2022-09-06T17:59:04Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Multilingual Multi-Aspect Explainability Analyses on Machine Reading Comprehension Models [76.48370548802464]
本稿では,マルチヘッド自己注意と最終MRCシステム性能の関係を検討するために,一連の解析実験を実施することに焦点を当てる。
問合せ及び問合せ理解の注意が問合せプロセスにおいて最も重要なものであることが判明した。
包括的可視化とケーススタディを通じて、注意マップに関するいくつかの一般的な知見も観察し、これらのモデルがどのように問題を解くかを理解するのに役立ちます。
論文 参考訳(メタデータ) (2021-08-26T04:23:57Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
社会的関連性の高い領域の決定に影響を与える洗練された統計モデルの使用が増加しています。
多くの政府、機関、企業は、アウトプットが人間の解釈可能な方法で説明しにくいため、採用に消極的です。
近年,機械学習モデルに解釈可能な説明を提供する方法として,学術文献が多数提案されている。
論文 参考訳(メタデータ) (2021-04-09T01:46:34Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
機械学習の研究は転換点にある。
研究の関心は、高度にパラメータ化されたモデルのパフォーマンス向上から、非常に具体的なタスクへとシフトしている。
このホワイトペーパーは、機械学習研究におけるこの新興分野の紹介と議論を提供する。
論文 参考訳(メタデータ) (2020-12-21T15:07:19Z) - Interpretability and Explainability: A Machine Learning Zoo Mini-tour [4.56877715768796]
解釈可能性と説明可能性は、医学、経済学、法学、自然科学における多くの機械学習および統計応用の中核にある。
本稿では,解釈可能性と説明可能性の相違を強調し,これら2つの研究方向について,その具体例を示す。
論文 参考訳(メタデータ) (2020-12-03T10:11:52Z) - Counterfactual Explanations for Machine Learning: A Review [5.908471365011942]
機械学習における対実的説明に関する研究をレビューし、分類する。
機械学習における対実的説明可能性に対する現代のアプローチは、多くの国で確立された法的教義と結びついている。
論文 参考訳(メタデータ) (2020-10-20T20:08:42Z) - Vulnerability Under Adversarial Machine Learning: Bias or Variance? [77.30759061082085]
本研究では,機械学習が訓練された深層ニューラルネットワークのバイアスと分散に与える影響について検討する。
我々の分析は、ディープニューラルネットワークが対向的摂動下で性能が劣っている理由に光を当てている。
本稿では,計算処理の複雑さをよく知られた機械学習手法よりも低く抑えた,新しい逆機械学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-01T00:58:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。