Uncertainty-aware multi-view co-training for semi-supervised medical
image segmentation and domain adaptation
- URL: http://arxiv.org/abs/2006.16806v1
- Date: Sun, 28 Jun 2020 22:04:54 GMT
- Title: Uncertainty-aware multi-view co-training for semi-supervised medical
image segmentation and domain adaptation
- Authors: Yingda Xia, Dong Yang, Zhiding Yu, Fengze Liu, Jinzheng Cai, Lequan
Yu, Zhuotun Zhu, Daguang Xu, Alan Yuille, Holger Roth
- Abstract summary: Unlabeled data is much easier to acquire than well-annotated data.
We propose uncertainty-aware multi-view co-training for medical image segmentation.
Our framework is capable of efficiently utilizing unlabeled data for better performance.
- Score: 35.33425093398756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although having achieved great success in medical image segmentation, deep
learning-based approaches usually require large amounts of well-annotated data,
which can be extremely expensive in the field of medical image analysis.
Unlabeled data, on the other hand, is much easier to acquire. Semi-supervised
learning and unsupervised domain adaptation both take the advantage of
unlabeled data, and they are closely related to each other. In this paper, we
propose uncertainty-aware multi-view co-training (UMCT), a unified framework
that addresses these two tasks for volumetric medical image segmentation. Our
framework is capable of efficiently utilizing unlabeled data for better
performance. We firstly rotate and permute the 3D volumes into multiple views
and train a 3D deep network on each view. We then apply co-training by
enforcing multi-view consistency on unlabeled data, where an uncertainty
estimation of each view is utilized to achieve accurate labeling. Experiments
on the NIH pancreas segmentation dataset and a multi-organ segmentation dataset
show state-of-the-art performance of the proposed framework on semi-supervised
medical image segmentation. Under unsupervised domain adaptation settings, we
validate the effectiveness of this work by adapting our multi-organ
segmentation model to two pathological organs from the Medical Segmentation
Decathlon Datasets. Additionally, we show that our UMCT-DA model can even
effectively handle the challenging situation where labeled source data is
inaccessible, demonstrating strong potentials for real-world applications.
Related papers
- Manifold-Aware Local Feature Modeling for Semi-Supervised Medical Image Segmentation [20.69908466577971]
We introduce the Manifold-Aware Local Feature Modeling Network (MANet), which enhances the U-Net architecture by incorporating manifold supervision signals.
Our experiments on datasets such as ACDC, LA, and Pancreas-NIH demonstrate that MANet consistently surpasses state-of-the-art methods in performance metrics.
arXiv Detail & Related papers (2024-10-14T08:40:35Z) - MOSMOS: Multi-organ segmentation facilitated by medical report supervision [10.396987980136602]
We propose a novel pre-training & fine-tuning framework for Multi-Organ Supervision (MOS)
Specifically, we first introduce global contrastive learning to align medical image-report pairs in the pre-training stage.
To remedy the discrepancy, we further leverage multi-label recognition to implicitly learn the semantic correspondence between image pixels and organ tags.
arXiv Detail & Related papers (2024-09-04T03:46:17Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - PCDAL: A Perturbation Consistency-Driven Active Learning Approach for
Medical Image Segmentation and Classification [12.560273908522714]
Supervised learning deeply relies on large-scale annotated data, which is expensive, time-consuming, and impractical to acquire in medical imaging applications.
Active Learning (AL) methods have been widely applied in natural image classification tasks to reduce annotation costs.
We propose an AL-based method that can be simultaneously applied to 2D medical image classification, segmentation, and 3D medical image segmentation tasks.
arXiv Detail & Related papers (2023-06-29T13:11:46Z) - Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
We develop a novel Multi-Scale Cross Supervised Contrastive Learning framework to segment structures in medical images.
Our approach contrasts multi-scale features based on ground-truth and cross-predicted labels, in order to extract robust feature representations.
It outperforms state-of-the-art semi-supervised methods by more than 3.0% in Dice.
arXiv Detail & Related papers (2023-06-25T16:55:32Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - Self-Paced Contrastive Learning for Semi-supervisedMedical Image
Segmentation with Meta-labels [6.349708371894538]
We propose to adapt contrastive learning to work with meta-label annotations.
We use the meta-labels for pre-training the image encoder as well as to regularize a semi-supervised training.
Results on three different medical image segmentation datasets show that our approach highly boosts the performance of a model trained on a few scans.
arXiv Detail & Related papers (2021-07-29T04:30:46Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Dual-Teacher: Integrating Intra-domain and Inter-domain Teachers for
Annotation-efficient Cardiac Segmentation [65.81546955181781]
We propose a novel semi-supervised domain adaptation approach, namely Dual-Teacher.
The student model learns the knowledge of unlabeled target data and labeled source data by two teacher models.
We demonstrate that our approach is able to concurrently utilize unlabeled data and cross-modality data with superior performance.
arXiv Detail & Related papers (2020-07-13T10:00:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.