Turbulence on the Global Economy influenced by Artificial Intelligence
and Foreign Policy Inefficiencies
- URL: http://arxiv.org/abs/2006.16911v1
- Date: Fri, 19 Jun 2020 10:59:32 GMT
- Title: Turbulence on the Global Economy influenced by Artificial Intelligence
and Foreign Policy Inefficiencies
- Authors: Kwadwo Osei Bonsu, Jie Song
- Abstract summary: This paper seeks to find the bridge between artificial intelligence and its impact on the international policy implementation.
We propose a disposition for the essentials of AI-based foreign policy and implementation.
- Score: 8.00696326952901
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is said that Data and Information are the new oil. One, who handles the
data, handles the emerging future of the global economy. Complex algorithms and
intelligence-based filter programs are utilized to manage, store, handle and
maneuver vast amounts of data for the fulfillment of specific purposes. This
paper seeks to find the bridge between artificial intelligence and its impact
on the international policy implementation in the light of geopolitical
influence, global economy and the future of labor markets. We hypothesize that
the distortion in the labor markets caused by artificial intelligence can be
mitigated by a collaborative international foreign policy on the deployment of
AI in the industrial circles. We, in this paper, then proceed to propose a
disposition for the essentials of AI-based foreign policy and implementation,
while asking questions such as 'could AI become the real Invisible Hand
discussed by economists?'.
Related papers
- Responsible AI for Earth Observation [10.380878519901998]
We systematically define the intersection of AI and EO, with a central focus on responsible AI practices.
We identify several critical components guiding this exploration from both academia and industry perspectives.
The paper explores potential opportunities and emerging trends, providing valuable insights for future research endeavors.
arXiv Detail & Related papers (2024-05-31T14:47:27Z) - Near to Mid-term Risks and Opportunities of Open-Source Generative AI [94.06233419171016]
Applications of Generative AI are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about potential risks and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source Generative AI.
arXiv Detail & Related papers (2024-04-25T21:14:24Z) - The Global Impact of AI-Artificial Intelligence: Recent Advances and
Future Directions, A Review [0.0]
The article highlights the implications of AI, including its impact on economic, ethical, social, security & privacy, and job displacement aspects.
It discusses the ethical concerns surrounding AI development, including issues of bias, security, and privacy violations.
The article concludes by emphasizing the importance of public engagement and education to promote awareness and understanding of AI's impact on society at large.
arXiv Detail & Related papers (2023-12-22T00:41:21Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Aligning Artificial Intelligence with Humans through Public Policy [0.0]
This essay outlines research on AI that learn structures in policy data that can be leveraged for downstream tasks.
We believe this represents the "comprehension" phase of AI and policy, but leveraging policy as a key source of human values to align AI requires "understanding" policy.
arXiv Detail & Related papers (2022-06-25T21:31:14Z) - Adaptive cognitive fit: Artificial intelligence augmented management of
information facets and representations [62.997667081978825]
Explosive growth in big data technologies and artificial intelligence [AI] applications have led to increasing pervasiveness of information facets.
Information facets, such as equivocality and veracity, can dominate and significantly influence human perceptions of information.
We suggest that artificially intelligent technologies that can adapt information representations to overcome cognitive limitations are necessary.
arXiv Detail & Related papers (2022-04-25T02:47:25Z) - AI Assurance using Causal Inference: Application to Public Policy [0.0]
Most AI approaches can only be represented as "black boxes" and suffer from the lack of transparency.
It is crucial not only to develop effective and robust AI systems, but to make sure their internal processes are explainable and fair.
arXiv Detail & Related papers (2021-12-01T16:03:06Z) - Machine Learning Featurizations for AI Hacking of Political Systems [0.0]
In the recent essay "The Coming AI Hackers," Schneier proposed a future application of artificial intelligences to discover, manipulate, and exploit vulnerabilities of social, economic, and political systems.
This work advances the concept by applying to it theory from machine learning, hypothesizing some possible "featurization" frameworks for AI hacking.
We develop graph and sequence data representations that would enable the application of a range of deep learning models to predict attributes and outcomes of political systems.
arXiv Detail & Related papers (2021-10-08T16:51:31Z) - Building a Foundation for Data-Driven, Interpretable, and Robust Policy
Design using the AI Economist [67.08543240320756]
We show that the AI Economist framework enables effective, flexible, and interpretable policy design using two-level reinforcement learning and data-driven simulations.
We find that log-linear policies trained using RL significantly improve social welfare, based on both public health and economic outcomes, compared to past outcomes.
arXiv Detail & Related papers (2021-08-06T01:30:41Z) - The AI Economist: Optimal Economic Policy Design via Two-level Deep
Reinforcement Learning [126.37520136341094]
We show that machine-learning-based economic simulation is a powerful policy and mechanism design framework.
The AI Economist is a two-level, deep RL framework that trains both agents and a social planner who co-adapt.
In simple one-step economies, the AI Economist recovers the optimal tax policy of economic theory.
arXiv Detail & Related papers (2021-08-05T17:42:35Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.