Data Science: Challenges and Directions
- URL: http://arxiv.org/abs/2006.16966v1
- Date: Sun, 28 Jun 2020 01:49:00 GMT
- Title: Data Science: Challenges and Directions
- Authors: Longbing Cao
- Abstract summary: We review hundreds of pieces of literature which include data science in their titles.
We find that the majority of the discussions essentially concern statistics, data mining, machine learning, big data, or broadly data analytics.
We focus on the research and innovation challenges inspired by the nature of data science problems as complex systems.
- Score: 42.98602883069444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While data science has emerged as a contentious new scientific field,
enormous debates and discussions have been made on it why we need data science
and what makes it as a science. In reviewing hundreds of pieces of literature
which include data science in their titles, we find that the majority of the
discussions essentially concern statistics, data mining, machine learning, big
data, or broadly data analytics, and only a limited number of new data-driven
challenges and directions have been explored. In this paper, we explore the
intrinsic challenges and directions inspired by comprehensively exploring the
complexities and intelligence embedded in data science problems. We focus on
the research and innovation challenges inspired by the nature of data science
problems as complex systems, and the methodologies for handling such systems.
Related papers
- Academic competitions [61.592427413342975]
This chapter provides a survey of academic challenges in the context of machine learning and related fields.
We review the most influential competitions in the last few years and analyze challenges per area of knowledge.
The aims of scientific challenges, their goals, major achievements and expectations for the next few years are reviewed.
arXiv Detail & Related papers (2023-12-01T01:01:04Z) - Data Science for Social Good [2.8621556092850065]
We present a framework for "data science for social good" (DSSG) research.
We perform an analysis of the literature to empirically demonstrate the paucity of work on DSSG in information systems.
We hope that this article and the special issue will spur future DSSG research.
arXiv Detail & Related papers (2023-11-02T15:40:20Z) - Knowledge Graphs for the Life Sciences: Recent Developments, Challenges
and Opportunities [11.35513523308132]
We discuss developments and advances in the use of graph-based technologies in life sciences.
We focus on three broad topics: the construction and management of Knowledge Graphs (KGs), the use of KGs and associated technologies in the discovery of new knowledge, and the use of KGs in artificial intelligence applications to support explanations.
arXiv Detail & Related papers (2023-09-29T14:03:34Z) - Modeling Information Change in Science Communication with Semantically
Matched Paraphrases [50.67030449927206]
SPICED is the first paraphrase dataset of scientific findings annotated for degree of information change.
SPICED contains 6,000 scientific finding pairs extracted from news stories, social media discussions, and full texts of original papers.
Models trained on SPICED improve downstream performance on evidence retrieval for fact checking of real-world scientific claims.
arXiv Detail & Related papers (2022-10-24T07:44:38Z) - Maximizing information from chemical engineering data sets: Applications
to machine learning [61.442473332320176]
We identify four characteristics of data arising in chemical engineering applications that make applying classical artificial intelligence approaches difficult.
For each of these data characteristics, we discuss applications where these data characteristics arise and show how current chemical engineering research is extending the fields of data science and machine learning to incorporate these challenges.
arXiv Detail & Related papers (2022-01-25T01:25:45Z) - Data Science: A Comprehensive Overview [42.98602883069444]
The twenty-first century has ushered in the age of big data and data economy, in which data DNA has become an intrinsic constituent of all data-based organisms.
An appropriate understanding of data DNA and its organisms relies on the new field of data science and its keystone, analytics.
This article is the first in the field to draw a comprehensive big picture, in addition to offering rich observations, lessons and thinking about data science and analytics.
arXiv Detail & Related papers (2020-07-01T02:33:58Z) - Data Science: Nature and Pitfalls [42.98602883069444]
A critical matter for the healthy development of data science in its early stages is to deeply understand the nature of data and data science.
These important issues motivate the discussions in this article.
arXiv Detail & Related papers (2020-06-28T02:06:54Z) - Ten Research Challenge Areas in Data Science [4.670305538969914]
Data science builds on knowledge from computer science, mathematics, statistics, and other disciplines.
This article starts with meta-questions about data science as a discipline and then elaborates on ten ideas for the basis of a research agenda for data science.
arXiv Detail & Related papers (2020-01-27T21:39:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.