Knowledge Graphs for the Life Sciences: Recent Developments, Challenges
and Opportunities
- URL: http://arxiv.org/abs/2309.17255v4
- Date: Wed, 20 Dec 2023 13:34:31 GMT
- Title: Knowledge Graphs for the Life Sciences: Recent Developments, Challenges
and Opportunities
- Authors: Jiaoyan Chen, Hang Dong, Janna Hastings, Ernesto Jim\'enez-Ruiz,
Vanessa L\'opez, Pierre Monnin, Catia Pesquita, Petr \v{S}koda, Valentina
Tamma
- Abstract summary: We discuss developments and advances in the use of graph-based technologies in life sciences.
We focus on three broad topics: the construction and management of Knowledge Graphs (KGs), the use of KGs and associated technologies in the discovery of new knowledge, and the use of KGs in artificial intelligence applications to support explanations.
- Score: 11.35513523308132
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The term life sciences refers to the disciplines that study living organisms
and life processes, and include chemistry, biology, medicine, and a range of
other related disciplines. Research efforts in life sciences are heavily
data-driven, as they produce and consume vast amounts of scientific data, much
of which is intrinsically relational and graph-structured.
The volume of data and the complexity of scientific concepts and relations
referred to therein promote the application of advanced knowledge-driven
technologies for managing and interpreting data, with the ultimate aim to
advance scientific discovery.
In this survey and position paper, we discuss recent developments and
advances in the use of graph-based technologies in life sciences and set out a
vision for how these technologies will impact these fields into the future. We
focus on three broad topics: the construction and management of Knowledge
Graphs (KGs), the use of KGs and associated technologies in the discovery of
new knowledge, and the use of KGs in artificial intelligence applications to
support explanations (explainable AI). We select a few exemplary use cases for
each topic, discuss the challenges and open research questions within these
topics, and conclude with a perspective and outlook that summarizes the
overarching challenges and their potential solutions as a guide for future
research.
Related papers
- Academic competitions [61.592427413342975]
This chapter provides a survey of academic challenges in the context of machine learning and related fields.
We review the most influential competitions in the last few years and analyze challenges per area of knowledge.
The aims of scientific challenges, their goals, major achievements and expectations for the next few years are reviewed.
arXiv Detail & Related papers (2023-12-01T01:01:04Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Discovering Causal Relations and Equations from Data [23.802778299505288]
This paper reviews the concepts, methods, and relevant works on causal and equation discovery in the broad field of Physics.
We provide a taxonomy for observational causal and equation discovery, point out connections, and showcase a complete set of case studies.
Exciting times are ahead with many challenges and opportunities to improve our understanding of complex systems.
arXiv Detail & Related papers (2023-05-21T19:22:50Z) - How Data Scientists Review the Scholarly Literature [4.406926847270567]
We examine the literature review practices of data scientists.
Data science represents a field seeing an exponential rise in papers.
No prior work has examined the specific practices and challenges faced by these scientists.
arXiv Detail & Related papers (2023-01-10T03:53:05Z) - Artificial Intelligence and Natural Language Processing and
Understanding in Space: Four ESA Case Studies [48.53582660901672]
We present a methodological framework based on artificial intelligence and natural language processing and understanding to automatically extract information from Space documents.
Case studies are implemented across different functional areas of ESA, including Mission Design, Quality Assurance, Long-Term Data Preservation, and the Open Space Innovation Platform.
arXiv Detail & Related papers (2022-10-07T15:50:17Z) - Coordinated Science Laboratory 70th Anniversary Symposium: The Future of
Computing [80.72844751804166]
In 2021, the Coordinated Science Laboratory CSL hosted the Future of Computing Symposium to celebrate its 70th anniversary.
We summarize the major technological points, insights, and directions that speakers brought forward during the symposium.
Participants discussed topics related to new computing paradigms, technologies, algorithms, behaviors, and research challenges to be expected in the future.
arXiv Detail & Related papers (2022-10-04T17:32:27Z) - Knowledge Graph and Accurate Portrait Construction of Scientific and
Technological Academic Conferences [14.130765322587264]
In recent years, with the continuous progress of science and technology, the number of scientific research achievements is increasing day by day.
The convening of scientific and technological academic conferences will bring large number of academic papers, researchers, research institutions and other data.
It is of great significance to use deep learning technology to mine the core information in the data of scientific and technological academic conferences.
arXiv Detail & Related papers (2022-04-11T06:15:45Z) - Generating Knowledge Graphs by Employing Natural Language Processing and
Machine Learning Techniques within the Scholarly Domain [1.9004296236396943]
We present a new architecture that takes advantage of Natural Language Processing and Machine Learning methods for extracting entities and relationships from research publications.
Within this research work, we i) tackle the challenge of knowledge extraction by employing several state-of-the-art Natural Language Processing and Text Mining tools.
We generated a scientific knowledge graph including 109,105 triples, extracted from 26,827 abstracts of papers within the Semantic Web domain.
arXiv Detail & Related papers (2020-10-28T08:31:40Z) - Data Science: Challenges and Directions [42.98602883069444]
We review hundreds of pieces of literature which include data science in their titles.
We find that the majority of the discussions essentially concern statistics, data mining, machine learning, big data, or broadly data analytics.
We focus on the research and innovation challenges inspired by the nature of data science problems as complex systems.
arXiv Detail & Related papers (2020-06-28T01:49:00Z) - A Survey on Knowledge Graphs: Representation, Acquisition and
Applications [89.78089494738002]
We review research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications.
For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed.
We explore several emerging topics, including meta learning, commonsense reasoning, and temporal knowledge graphs.
arXiv Detail & Related papers (2020-02-02T13:17:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.