FathomNet: An underwater image training database for ocean exploration
and discovery
- URL: http://arxiv.org/abs/2007.00114v3
- Date: Fri, 10 Jul 2020 04:14:21 GMT
- Title: FathomNet: An underwater image training database for ocean exploration
and discovery
- Authors: Oc\'eane Boulais, Ben Woodward, Brian Schlining, Lonny Lundsten, Kevin
Barnard, Katy Croff Bell, and Kakani Katija
- Abstract summary: FathomNet is a novel baseline image training set optimized to accelerate development of modern, intelligent, and automated analysis of underwater imagery.
To date, there are more than 80,000 images and 106,000 localizations for 233 different classes, including midwater and benthic organisms.
While we find quality results on prediction for this new dataset, our results indicate that we are ultimately in need of a larger data set for ocean exploration.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Thousands of hours of marine video data are collected annually from remotely
operated vehicles (ROVs) and other underwater assets. However, current manual
methods of analysis impede the full utilization of collected data for real time
algorithms for ROV and large biodiversity analyses. FathomNet is a novel
baseline image training set, optimized to accelerate development of modern,
intelligent, and automated analysis of underwater imagery. Our seed data set
consists of an expertly annotated and continuously maintained database with
more than 26,000 hours of videotape, 6.8 million annotations, and 4,349 terms
in the knowledge base. FathomNet leverages this data set by providing imagery,
localizations, and class labels of underwater concepts in order to enable
machine learning algorithm development. To date, there are more than 80,000
images and 106,000 localizations for 233 different classes, including midwater
and benthic organisms. Our experiments consisted of training various deep
learning algorithms with approaches to address weakly supervised localization,
image labeling, object detection and classification which prove to be
promising. While we find quality results on prediction for this new dataset,
our results indicate that we are ultimately in need of a larger data set for
ocean exploration.
Related papers
- SeafloorAI: A Large-scale Vision-Language Dataset for Seafloor Geological Survey [11.642711706384212]
We introduce SeafloorAI, the first extensive AI-ready datasets for seafloor mapping across 5 geological layers.
The dataset consists of 62 geo-distributed data surveys spanning 17,300 square kilometers, with 696K sonar images, 827K annotated segmentation masks, 696K detailed language descriptions.
arXiv Detail & Related papers (2024-10-31T19:37:47Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - BenthicNet: A global compilation of seafloor images for deep learning applications [25.466405216505166]
BenthicNet is a global compilation of seafloor imagery.
An initial set of over 11.4 million images was collected and curated to represent a diversity of seafloor environments.
A large deep learning model was trained on this compilation and preliminary results suggest it has utility for automating large and small-scale image analysis tasks.
arXiv Detail & Related papers (2024-05-08T17:37:57Z) - A Dataset with Multibeam Forward-Looking Sonar for Underwater Object
Detection [0.0]
Multibeam forward-looking sonar (MFLS) plays an important role in underwater detection.
There are several challenges to the research on underwater object detection with MFLS.
We present a novel dataset, consisting of over 9000 MFLS images captured using Tritech Gemini 1200ik sonar.
arXiv Detail & Related papers (2022-12-01T08:26:03Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
This paper describes how advanced deep learning based computer vision algorithms are applied to enable real-time on-board sensor processing for small UAVs.
All algorithms have been developed using state-of-the-art image processing methods based on deep neural networks.
arXiv Detail & Related papers (2022-11-02T11:10:42Z) - A New Path: Scaling Vision-and-Language Navigation with Synthetic
Instructions and Imitation Learning [70.14372215250535]
Recent studies in Vision-and-Language Navigation (VLN) train RL agents to execute natural-language navigation instructions in photorealistic environments.
Given the scarcity of human instruction data and limited diversity in the training environments, these agents still struggle with complex language grounding and spatial language understanding.
We take 500+ indoor environments captured in densely-sampled 360 degree panoramas, construct navigation trajectories through these panoramas, and generate a visually-grounded instruction for each trajectory.
The resulting dataset of 4.2M instruction-trajectory pairs is two orders of magnitude larger than existing human-annotated datasets.
arXiv Detail & Related papers (2022-10-06T17:59:08Z) - Satellite Image Time Series Analysis for Big Earth Observation Data [50.591267188664666]
This paper describes sits, an open-source R package for satellite image time series analysis using machine learning.
We show that this approach produces high accuracy for land use and land cover maps through a case study in the Cerrado biome.
arXiv Detail & Related papers (2022-04-24T15:23:25Z) - FathomNet: A global underwater image training set for enabling
artificial intelligence in the ocean [0.0]
Ocean-going platforms are integrating high-resolution camera feeds for observation and navigation, producing a deluge of visual data.
Recent advances in machine learning enable fast, sophisticated analysis of visual data, but have had limited success in the oceanographic world.
We will demonstrate how machine learning models trained on FathomNet data can be applied across different institutional video data.
arXiv Detail & Related papers (2021-09-29T18:08:42Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
We present a novel method for underwater image restoration based on unsupervised image-to-image translation framework.
Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images.
arXiv Detail & Related papers (2021-06-20T16:06:26Z) - Object Detection in Aerial Images: A Large-Scale Benchmark and
Challenges [124.48654341780431]
We present a large-scale dataset of Object deTection in Aerial images (DOTA) and comprehensive baselines for ODAI.
The proposed DOTA dataset contains 1,793,658 object instances of 18 categories of oriented-bounding-box annotations collected from 11,268 aerial images.
We build baselines covering 10 state-of-the-art algorithms with over 70 configurations, where the speed and accuracy performances of each model have been evaluated.
arXiv Detail & Related papers (2021-02-24T11:20:55Z) - A Realistic Fish-Habitat Dataset to Evaluate Algorithms for Underwater
Visual Analysis [2.6476746128312194]
We present DeepFish as a benchmark suite with a large-scale dataset to train and test methods for several computer vision tasks.
The dataset consists of approximately 40 thousand images collected underwater from 20 greenhabitats in the marine-environments of tropical Australia.
Our experiments provide an in-depth analysis of the dataset characteristics, and the performance evaluation of several state-of-the-art approaches.
arXiv Detail & Related papers (2020-08-28T12:20:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.