Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future
- URL: http://arxiv.org/abs/2410.05577v1
- Date: Tue, 8 Oct 2024 00:25:33 GMT
- Title: Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future
- Authors: Long Chen, Yuzhi Huang, Junyu Dong, Qi Xu, Sam Kwong, Huimin Lu, Huchuan Lu, Chongyi Li,
- Abstract summary: Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
- Score: 119.88454942558485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Underwater object detection (UOD), aiming to identify and localise the objects in underwater images or videos, presents significant challenges due to the optical distortion, water turbidity, and changing illumination in underwater scenes. In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD. To further facilitate future advancements, we comprehensively study AI-based UOD. In this survey, we first categorise existing algorithms into traditional machine learning-based methods and deep learning-based methods, and summarise them by considering learning strategy, experimental dataset, utilised features or frameworks, and learning stage. Next, we discuss the potential challenges and suggest possible solutions and new directions. We also perform both quantitative and qualitative evaluations of mainstream algorithms across multiple benchmark datasets by considering the diverse and biased experimental setups. Finally, we introduce two off-the-shelf detection analysis tools, Diagnosis and TIDE, which well-examine the effects of object characteristics and various types of errors on detectors. These tools help identify the strengths and weaknesses of detectors, providing insigts for further improvement. The source codes, trained models, utilised datasets, detection results, and detection analysis tools are public available at \url{https://github.com/LongChenCV/UODReview}, and will be regularly updated.
Related papers
- Semi-Supervised Object Detection: A Survey on Progress from CNN to Transformer [12.042768320132694]
This paper presents a review of 27 cutting-edge developments in semi-supervised learning for object detection.
It covers data augmentation techniques, pseudo-labeling strategies, consistency regularization, and adversarial training methods.
We aim to ignite further research interest in overcoming existing challenges and exploring new directions in semi-supervised learning for object detection.
arXiv Detail & Related papers (2024-07-11T12:58:13Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
Underwater image enhancement (UIE) presents a significant challenge within computer vision research.
Despite the development of numerous UIE algorithms, a thorough and systematic review is still absent.
arXiv Detail & Related papers (2024-05-30T04:46:40Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
We discuss the recent advances in deep learning-based object pose estimation.
Our survey also covers multiple input data modalities, degrees-of-freedom of output poses, object properties, and downstream tasks.
arXiv Detail & Related papers (2024-05-13T14:44:22Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Remote Sensing Object Detection Meets Deep Learning: A Meta-review of
Challenges and Advances [51.70835702029498]
This review aims to present a comprehensive review of the recent achievements in deep learning based RSOD methods.
We identify five main challenges in RSOD, including multi-scale object detection, rotated object detection, weak object detection, tiny object detection, and object detection with limited supervision.
We also review the widely used benchmark datasets and evaluation metrics within the field of RSOD, as well as the application scenarios for RSOD.
arXiv Detail & Related papers (2023-09-13T06:48:32Z) - A Comprehensive Study on Object Detection Techniques in Unconstrained
Environments [0.0]
Object detection is a crucial task in computer vision that aims to identify and localize objects in images or videos.
The recent advancements in deep learning and Convolutional Neural Networks (CNNs) have significantly improved the performance of object detection techniques.
This paper presents a comprehensive study of object detection techniques in unconstrained environments, including various challenges, datasets, and state-of-the-art approaches.
arXiv Detail & Related papers (2023-04-11T15:45:03Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
Both politics and pandemics have recently provided ample motivation for the development of machine learning-enabled disinformation (a.k.a. fake news) detection algorithms.
Existing literature has focused primarily on the fully-automated case, but the resulting techniques cannot reliably detect disinformation on the varied topics, sources, and time scales required for military applications.
By leveraging an already-available analyst as a human-in-the-loop, canonical machine learning techniques of sentiment analysis, aspect-based sentiment analysis, and stance detection become plausible methods to use for a partially-automated disinformation detection system.
arXiv Detail & Related papers (2021-11-09T13:30:34Z) - A Survey on Deep Domain Adaptation and Tiny Object Detection Challenges,
Techniques and Datasets [11.911055871045715]
This survey paper specially analyzed computer vision-based object detection challenges and solutions by different techniques.
We examined general as well as tiny object detection-related challenges and offered solutions by historical and comparative analysis.
arXiv Detail & Related papers (2021-07-16T14:33:31Z) - Data-efficient Weakly-supervised Learning for On-line Object Detection
under Domain Shift in Robotics [24.878465999976594]
Several object detection methods have been proposed in the literature, the vast majority based on Deep Convolutional Neural Networks (DCNNs)
These methods have important limitations for robotics: Learning solely on off-line data may introduce biases, and prevents adaptation to novel tasks.
In this work, we investigate how weakly-supervised learning can cope with these problems.
arXiv Detail & Related papers (2020-12-28T16:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.