論文の概要: Linear Convergent Decentralized Optimization with Compression
- arxiv url: http://arxiv.org/abs/2007.00232v2
- Date: Thu, 18 Mar 2021 20:46:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 22:35:01.164302
- Title: Linear Convergent Decentralized Optimization with Compression
- Title(参考訳): 圧縮による線形収束分散最適化
- Authors: Xiaorui Liu, Yao Li, Rongrong Wang, Jiliang Tang, Ming Yan
- Abstract要約: 圧縮を伴う既存の分散アルゴリズムは主にDGD型アルゴリズムの圧縮に焦点を当てている。
原始双対アルゴリズムによって動機付けられた本論文は、最初のアンダーラインLinunderlineEAr収束を提案する。
underline Decentralized with compression, LEAD。
- 参考スコア(独自算出の注目度): 50.44269451541387
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Communication compression has become a key strategy to speed up distributed
optimization. However, existing decentralized algorithms with compression
mainly focus on compressing DGD-type algorithms. They are unsatisfactory in
terms of convergence rate, stability, and the capability to handle
heterogeneous data. Motivated by primal-dual algorithms, this paper proposes
the first \underline{L}in\underline{EA}r convergent \underline{D}ecentralized
algorithm with compression, LEAD. Our theory describes the coupled dynamics of
the inexact primal and dual update as well as compression error, and we provide
the first consensus error bound in such settings without assuming bounded
gradients. Experiments on convex problems validate our theoretical analysis,
and empirical study on deep neural nets shows that LEAD is applicable to
non-convex problems.
- Abstract(参考訳): 通信圧縮は分散最適化をスピードアップするための重要な戦略になっている。
しかし、圧縮を伴う既存の分散アルゴリズムは主にDGD型アルゴリズムの圧縮に焦点を当てている。
これらは収束率、安定性、異種データを扱う能力という点では不十分である。
本稿では, 第一次双対アルゴリズムをベースとして, LEAD を用いた最初の分散アルゴリズムである \underline{L}in\underline{EA}r を提案する。
本理論では, 初期値と二値更新値の結合力学と圧縮誤差を記述し, 境界勾配を仮定することなく, そのような設定で有界な最初のコンセンサス誤差を与える。
対流問題の実験は理論解析を検証し、ディープニューラルネットに関する実証研究は鉛が非凸問題に適用できることを示した。
関連論文リスト
- Flattened one-bit stochastic gradient descent: compressed distributed optimization with controlled variance [55.01966743652196]
パラメータ・サーバ・フレームワークにおける圧縮勾配通信を用いた分散勾配降下(SGD)のための新しいアルゴリズムを提案する。
平坦な1ビット勾配勾配勾配法(FO-SGD)は2つの単純なアルゴリズムの考え方に依存している。
論文 参考訳(メタデータ) (2024-05-17T21:17:27Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Lower Bounds and Accelerated Algorithms in Distributed Stochastic
Optimization with Communication Compression [31.107056382542417]
通信圧縮は通信オーバーヘッドを軽減するための重要な戦略である。
軽度条件下での圧縮のほぼ最適アルゴリズムであるNEOLITHICを提案する。
論文 参考訳(メタデータ) (2023-05-12T17:02:43Z) - Can Decentralized Stochastic Minimax Optimization Algorithms Converge
Linearly for Finite-Sum Nonconvex-Nonconcave Problems? [56.62372517641597]
分散化されたミニマックス最適化は、幅広い機械学習に応用されているため、ここ数年で活発に研究されている。
本稿では,非コンカブ問題に対する2つの新しい分散化ミニマックス最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-24T02:19:39Z) - Lower Bounds and Nearly Optimal Algorithms in Distributed Learning with
Communication Compression [33.217552987061474]
通信圧縮は、通信を減らす最も効果的な方法の1つである。
分散最適化と学習の最近の進歩は、通信圧縮が通信を減らす最も効果的な方法の1つであることを示している。
論文 参考訳(メタデータ) (2022-06-08T03:36:34Z) - On Arbitrary Compression for Decentralized Consensus and Stochastic
Optimization over Directed Networks [0.6526824510982799]
所望の圧縮比に応じてメッセージを圧縮する反復型アルゴリズムを提案する。
既存の文献とは対照的に、任意の圧縮比が可能である。
滑らかな関数に対する分散最適化問題に対して明確な収束率を示す。
論文 参考訳(メタデータ) (2022-04-18T04:41:56Z) - Decentralized Composite Optimization with Compression [36.75785129001134]
非滑らかなコンポーネントを用いた分散合成最適化問題について検討する。
圧縮を伴う収束アンダーライン分散アルゴリズム Prox-LEAD を提案する。
我々の定理は、Prox-LEADが任意の圧縮精度で動作することを示している。
論文 参考訳(メタデータ) (2021-08-10T04:54:52Z) - A Linearly Convergent Algorithm for Decentralized Optimization: Sending
Less Bits for Free! [72.31332210635524]
分散最適化手法は、中央コーディネータを使わずに、機械学習モデルのデバイス上でのトレーニングを可能にする。
ランダム化圧縮演算子を適用し,通信ボトルネックに対処する新しいランダム化一階法を提案する。
本手法は,ベースラインに比べて通信数の増加を伴わずに問題を解くことができることを示す。
論文 参考訳(メタデータ) (2020-11-03T13:35:53Z) - PowerGossip: Practical Low-Rank Communication Compression in
Decentralized Deep Learning [62.440827696638664]
本稿では,近隣労働者間のモデル差を直接圧縮する簡単なアルゴリズムを提案する。
中央集権的なディープラーニングのためにPowerSGDにインスパイアされたこのアルゴリズムは、パワーステップを使用して、1ビットあたりの転送情報を最大化する。
論文 参考訳(メタデータ) (2020-08-04T09:14:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。