論文の概要: Temporal Calibrated Regularization for Robust Noisy Label Learning
- arxiv url: http://arxiv.org/abs/2007.00240v1
- Date: Wed, 1 Jul 2020 04:48:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 21:59:04.002180
- Title: Temporal Calibrated Regularization for Robust Noisy Label Learning
- Title(参考訳): ロバスト雑音ラベル学習のための時間校正正規化
- Authors: Dongxian Wu, Yisen Wang, Zhuobin Zheng, Shu-tao Xia
- Abstract要約: ディープニューラルネットワーク(DNN)は、大規模な注釈付きデータセットの助けを借りて、多くのタスクで大きな成功を収めている。
しかし、大規模なデータのラベル付けは非常にコストがかかりエラーが発生しやすいため、アノテーションの品質を保証することは困難である。
本稿では,従来のラベルと予測を併用したTCR(Temporal Calibrated Regularization)を提案する。
- 参考スコア(独自算出の注目度): 60.90967240168525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) exhibit great success on many tasks with the help
of large-scale well annotated datasets. However, labeling large-scale data can
be very costly and error-prone so that it is difficult to guarantee the
annotation quality (i.e., having noisy labels). Training on these noisy labeled
datasets may adversely deteriorate their generalization performance. Existing
methods either rely on complex training stage division or bring too much
computation for marginal performance improvement. In this paper, we propose a
Temporal Calibrated Regularization (TCR), in which we utilize the original
labels and the predictions in the previous epoch together to make DNN inherit
the simple pattern it has learned with little overhead. We conduct extensive
experiments on various neural network architectures and datasets, and find that
it consistently enhances the robustness of DNNs to label noise.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、大規模な注釈付きデータセットの助けを借りて、多くのタスクで大きな成功を収めている。
しかし、大規模なデータのラベル付けは非常にコストがかかりエラーが発生しやすいため、アノテーションの品質(ノイズのあるラベルを持つ)を保証することは困難である。
これらのノイズラベル付きデータセットのトレーニングは、一般化性能を悪化させる可能性がある。
既存のメソッドは複雑なトレーニングステージ分割に依存するか、限界性能改善のために過剰な計算をもたらすかのどちらかだ。
本稿では,DNNが学習した単純なパターンをほとんどオーバーヘッドなく継承できるように,元のラベルと以前のエポックの予測を併用した時間校正正規化(TCR)を提案する。
我々は,様々なニューラルネットワークアーキテクチャとデータセットについて広範な実験を行い,dnnの雑音に対するロバスト性が一貫して向上することを示す。
関連論文リスト
- An Embedding is Worth a Thousand Noisy Labels [0.11999555634662634]
本稿では,重み付けされたアダプティブNearest Neighborアプローチを用いてラベルノイズに対処するWANNを提案する。
WANNの参照手法は、様々な大きさの多様なデータセットや、様々なノイズタイプや重大さで優れていることを示す。
私たちのアプローチは、効率性と説明可能性を強調し、ディープニューラルネットワークトレーニングの固有の制限を克服するための、シンプルで堅牢なソリューションとして現れます。
論文 参考訳(メタデータ) (2024-08-26T15:32:31Z) - Stochastic Restarting to Overcome Overfitting in Neural Networks with Noisy Labels [2.048226951354646]
本研究では,チェックポイントから再起動することで,ディープニューラルネットワーク(DNN)をノイズラベルでトレーニングする際の一般化性能が大幅に向上することを示す。
本研究では, 統計物理学分野において, ターゲットの探索を効率的に行うために, 再起動に基づく手法を開発した。
提案手法の重要な側面は,実装の容易さと他のメソッドとの互換性でありながら,性能が著しく向上している点である。
論文 参考訳(メタデータ) (2024-06-01T10:45:41Z) - ERASE: Error-Resilient Representation Learning on Graphs for Label Noise
Tolerance [53.73316938815873]
本稿では, ERASE (Error-Resilient representation learning on graphs for lAbel noiSe tolerancE) という手法を提案する。
ERASEは、プロトタイプの擬似ラベルとプロパゲーションされた識別ラベルを組み合わせて、表現をエラーレジリエンスで更新する。
提案手法は, 広い雑音レベルにおいて, 複数のベースラインをクリアマージンで上回り, 高いスケーラビリティを享受できる。
論文 参考訳(メタデータ) (2023-12-13T17:59:07Z) - Towards Harnessing Feature Embedding for Robust Learning with Noisy
Labels [44.133307197696446]
ディープニューラルネットワーク(DNN)の記憶効果は,近年のラベルノイズ学習法において重要な役割を担っている。
ラベルノイズを用いたディープラーニングのための新しい特徴埋め込み方式, LabEl Noise Dilution (LEND) を提案する。
論文 参考訳(メタデータ) (2022-06-27T02:45:09Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
本稿では,ノイズラベルをインスタンスに明示的に関連付ける,単純かつ普遍的な確率モデルを提案する。
合成および実世界のラベルノイズを用いたデータセット実験により,提案手法がロバスト性に大きな改善をもたらすことを確認した。
論文 参考訳(メタデータ) (2021-01-14T05:43:51Z) - KNN-enhanced Deep Learning Against Noisy Labels [4.765948508271371]
Deep Neural Networks(DNN)の監視学習は、データ空腹である。
本研究では,ラベルクリーンアップに深いKNNを適用することを提案する。
ニューラルネットワークを反復的にトレーニングし、ラベルを更新し、ラベル回復率の向上と分類性能の向上を同時に進める。
論文 参考訳(メタデータ) (2020-12-08T05:21:29Z) - Deep Time Delay Neural Network for Speech Enhancement with Full Data
Learning [60.20150317299749]
本稿では,全データ学習による音声強調のためのディープタイム遅延ニューラルネットワーク(TDNN)を提案する。
トレーニングデータを完全に活用するために,音声強調のための完全なデータ学習手法を提案する。
論文 参考訳(メタデータ) (2020-11-11T06:32:37Z) - Combining Label Propagation and Simple Models Out-performs Graph Neural
Networks [52.121819834353865]
多くの標準的なトランスダクティブノード分類ベンチマークでは、最先端のGNNの性能を超えたり、一致させることができる。
これをC&S(Correct and Smooth)と呼ぶ。
我々のアプローチは、様々なベンチマークで最先端のGNNの性能を上回るか、ほぼ一致している。
論文 参考訳(メタデータ) (2020-10-27T02:10:52Z) - Improving Semantic Segmentation via Self-Training [75.07114899941095]
半教師付きアプローチ,特に自己学習パラダイムを用いて,最先端の成果を得ることができることを示す。
まず、ラベル付きデータに基づいて教師モデルを訓練し、次にラベルなしデータの大規模なセット上で擬似ラベルを生成する。
私たちの堅牢なトレーニングフレームワークは、人名と擬似ラベルを共同で消化し、Cityscapes、CamVid、KITTIデータセット上で最高のパフォーマンスを達成することができます。
論文 参考訳(メタデータ) (2020-04-30T17:09:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。