Estimation with Uncertainty via Conditional Generative Adversarial
Networks
- URL: http://arxiv.org/abs/2007.00334v1
- Date: Wed, 1 Jul 2020 08:54:17 GMT
- Title: Estimation with Uncertainty via Conditional Generative Adversarial
Networks
- Authors: Minhyeok Lee, Junhee Seok
- Abstract summary: We propose a predictive probabilistic neural network model, which corresponds to a different manner of using the generator in conditional Generative Adversarial Network (cGAN)
By reversing the input and output of ordinary cGAN, the model can be successfully used as a predictive model.
In addition, to measure the uncertainty of predictions, we introduce the entropy and relative entropy for regression problems and classification problems.
- Score: 3.829070379776576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional predictive Artificial Neural Networks (ANNs) commonly employ
deterministic weight matrices; therefore, their prediction is a point estimate.
Such a deterministic nature in ANNs causes the limitations of using ANNs for
medical diagnosis, law problems, and portfolio management, in which discovering
not only the prediction but also the uncertainty of the prediction is
essentially required. To address such a problem, we propose a predictive
probabilistic neural network model, which corresponds to a different manner of
using the generator in conditional Generative Adversarial Network (cGAN) that
has been routinely used for conditional sample generation. By reversing the
input and output of ordinary cGAN, the model can be successfully used as a
predictive model; besides, the model is robust against noises since adversarial
training is employed. In addition, to measure the uncertainty of predictions,
we introduce the entropy and relative entropy for regression problems and
classification problems, respectively. The proposed framework is applied to
stock market data and an image classification task. As a result, the proposed
framework shows superior estimation performance, especially on noisy data;
moreover, it is demonstrated that the proposed framework can properly estimate
the uncertainty of predictions.
Related papers
- Creating Probabilistic Forecasts from Arbitrary Deterministic Forecasts
using Conditional Invertible Neural Networks [0.19573380763700712]
We use a conditional Invertible Neural Network (cINN) to learn the underlying distribution of the data and then combine the uncertainty from this distribution with an arbitrary deterministic forecast.
Our approach enables the simple creation of probabilistic forecasts without complicated statistical loss functions or further assumptions.
arXiv Detail & Related papers (2023-02-03T15:11:39Z) - Confidence estimation of classification based on the distribution of the
neural network output layer [4.529188601556233]
One of the most common problems preventing the application of prediction models in the real world is lack of generalization.
We propose novel methods that estimate uncertainty of particular predictions generated by a neural network classification model.
The proposed methods infer the confidence of a particular prediction based on the distribution of the logit values corresponding to this prediction.
arXiv Detail & Related papers (2022-10-14T12:32:50Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Robust uncertainty estimates with out-of-distribution pseudo-inputs
training [0.0]
We propose to explicitly train the uncertainty predictor where we are not given data to make it reliable.
As one cannot train without data, we provide mechanisms for generating pseudo-inputs in informative low-density regions of the input space.
With a holistic evaluation, we demonstrate that this yields robust and interpretable predictions of uncertainty while retaining state-of-the-art performance on diverse tasks.
arXiv Detail & Related papers (2022-01-15T17:15:07Z) - Evaluation of Machine Learning Techniques for Forecast Uncertainty
Quantification [0.13999481573773068]
Ensemble forecasting is, so far, the most successful approach to produce relevant forecasts along with an estimation of their uncertainty.
Main limitations of ensemble forecasting are the high computational cost and the difficulty to capture and quantify different sources of uncertainty.
In this work proof-of-concept model experiments are conducted to examine the performance of ANNs trained to predict a corrected state of the system and the state uncertainty using only a single deterministic forecast as input.
arXiv Detail & Related papers (2021-11-29T16:52:17Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.