A Multi-spectral Dataset for Evaluating Motion Estimation Systems
- URL: http://arxiv.org/abs/2007.00622v2
- Date: Sun, 16 May 2021 08:46:02 GMT
- Title: A Multi-spectral Dataset for Evaluating Motion Estimation Systems
- Authors: Weichen Dai, Yu Zhang, Shenzhou Chen, Donglei Sun, Da Kong
- Abstract summary: This paper presents a novel dataset for evaluating the performance of multi-spectral motion estimation systems.
All the sequences are recorded from a handheld multi-spectral device.
The depth images are captured by a Microsoft Kinect2 and can have benefits for learning cross-modalities stereo matching.
- Score: 7.953825491774407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visible images have been widely used for motion estimation. Thermal images,
in contrast, are more challenging to be used in motion estimation since they
typically have lower resolution, less texture, and more noise. In this paper, a
novel dataset for evaluating the performance of multi-spectral motion
estimation systems is presented. All the sequences are recorded from a handheld
multi-spectral device. It consists of a standard visible-light camera, a
long-wave infrared camera, an RGB-D camera, and an inertial measurement unit
(IMU). The multi-spectral images, including both color and thermal images in
full sensor resolution (640 x 480), are obtained from a standard and a
long-wave infrared camera at 32Hz with hardware-synchronization. The depth
images are captured by a Microsoft Kinect2 and can have benefits for learning
cross-modalities stereo matching. For trajectory evaluation, accurate
ground-truth camera poses obtained from a motion capture system are provided.
In addition to the sequences with bright illumination, the dataset also
contains dim, varying, and complex illumination scenes. The full dataset,
including raw data and calibration data with detailed data format
specifications, is publicly available.
Related papers
- DIDLM:A Comprehensive Multi-Sensor Dataset with Infrared Cameras, Depth Cameras, LiDAR, and 4D Millimeter-Wave Radar in Challenging Scenarios for 3D Mapping [7.050468075029598]
This study presents a comprehensive multi-sensor dataset designed for 3D mapping in challenging indoor and outdoor environments.
The dataset comprises data from infrared cameras, depth cameras, LiDAR, and 4D millimeter-wave radar.
Various SLAM algorithms are employed to process the dataset, revealing performance differences among algorithms in different scenarios.
arXiv Detail & Related papers (2024-04-15T09:49:33Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM.
Our method, MM3DGS, addresses the limitations of prior rendering by enabling faster scale awareness, and improved trajectory tracking.
We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit.
arXiv Detail & Related papers (2024-04-01T04:57:41Z) - MTMMC: A Large-Scale Real-World Multi-Modal Camera Tracking Benchmark [63.878793340338035]
Multi-target multi-camera tracking is a crucial task that involves identifying and tracking individuals over time using video streams from multiple cameras.
Existing datasets for this task are either synthetically generated or artificially constructed within a controlled camera network setting.
We present MTMMC, a real-world, large-scale dataset that includes long video sequences captured by 16 multi-modal cameras in two different environments.
arXiv Detail & Related papers (2024-03-29T15:08:37Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
This paper addresses the limitations of current datasets for 3D vision tasks in terms of accuracy, size, realism, and suitable imaging modalities for photometrically challenging objects.
We propose a novel annotation and acquisition pipeline that enhances existing 3D perception and 6D object pose datasets.
arXiv Detail & Related papers (2023-08-21T10:38:32Z) - VECtor: A Versatile Event-Centric Benchmark for Multi-Sensor SLAM [31.779462222706346]
Event cameras hold strong potential to complement regular cameras in situations of high dynamics or challenging illumination.
Our contribution is the first complete set of benchmark datasets captured with a multi-sensor setup.
Individual sequences include both small and large-scale environments, and cover the specific challenges targeted by dynamic vision sensors.
arXiv Detail & Related papers (2022-07-04T13:37:26Z) - Multi-sensor large-scale dataset for multi-view 3D reconstruction [63.59401680137808]
We present a new multi-sensor dataset for multi-view 3D surface reconstruction.
It includes registered RGB and depth data from sensors of different resolutions and modalities: smartphones, Intel RealSense, Microsoft Kinect, industrial cameras, and structured-light scanner.
We provide around 1.4 million images of 107 different scenes acquired from 100 viewing directions under 14 lighting conditions.
arXiv Detail & Related papers (2022-03-11T17:32:27Z) - TUM-VIE: The TUM Stereo Visual-Inertial Event Dataset [50.8779574716494]
Event cameras are bio-inspired vision sensors which measure per pixel brightness changes.
They offer numerous benefits over traditional, frame-based cameras, including low latency, high dynamic range, high temporal resolution and low power consumption.
To foster the development of 3D perception and navigation algorithms with event cameras, we present the TUM-VIE dataset.
arXiv Detail & Related papers (2021-08-16T19:53:56Z) - High-Resolution Depth Maps Based on TOF-Stereo Fusion [27.10059147107254]
We propose a novel TOF-stereo fusion method based on an efficient seed-growing algorithm.
We show that the proposed algorithm outperforms 2D image-based stereo algorithms.
The algorithm potentially exhibits real-time performance on a single CPU.
arXiv Detail & Related papers (2021-07-30T15:11:42Z) - Event-based Stereo Visual Odometry [42.77238738150496]
We present a solution to the problem of visual odometry from the data acquired by a stereo event-based camera rig.
We seek to maximize thetemporal consistency of stereo event-based data while using a simple and efficient representation.
arXiv Detail & Related papers (2020-07-30T15:53:28Z) - Multi-View Photometric Stereo: A Robust Solution and Benchmark Dataset
for Spatially Varying Isotropic Materials [65.95928593628128]
We present a method to capture both 3D shape and spatially varying reflectance with a multi-view photometric stereo technique.
Our algorithm is suitable for perspective cameras and nearby point light sources.
arXiv Detail & Related papers (2020-01-18T12:26:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.