Implementing a Fast Unbounded Quantum Fanout Gate Using Power-Law
Interactions
- URL: http://arxiv.org/abs/2007.00662v1
- Date: Wed, 1 Jul 2020 18:00:00 GMT
- Title: Implementing a Fast Unbounded Quantum Fanout Gate Using Power-Law
Interactions
- Authors: Andrew Y. Guo, Abhinav Deshpande, Su-Kuan Chu, Zachary Eldredge,
Przemyslaw Bienias, Dhruv Devulapalli, Yuan Su, Andrew M. Childs, and Alexey
V. Gorshkov
- Abstract summary: Power-law interactions with strength decaying as $1/ralpha$ in the distance provide an experimentally realizable resource for information processing.
We leverage the power of these interactions to implement a fast quantum fanout gate with an arbitrary number of targets.
We show that power-law systems with $alpha le D$ are difficult to simulate classically even for short times, under a standard assumption that factoring is classically intractable.
- Score: 0.9634136878988853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The standard circuit model for quantum computation presumes the ability to
directly perform gates between arbitrary pairs of qubits, which is unlikely to
be practical for large-scale experiments. Power-law interactions with strength
decaying as $1/r^\alpha$ in the distance $r$ provide an experimentally
realizable resource for information processing, whilst still retaining
long-range connectivity. We leverage the power of these interactions to
implement a fast quantum fanout gate with an arbitrary number of targets. Our
implementation allows the quantum Fourier transform (QFT) and Shor's algorithm
to be performed on a $D$-dimensional lattice in time logarithmic in the number
of qubits for interactions with $\alpha \le D$. As a corollary, we show that
power-law systems with $\alpha \le D$ are difficult to simulate classically
even for short times, under a standard assumption that factoring is classically
intractable. Complementarily, we develop a new technique to give a general
lower bound, linear in the size of the system, on the time required to
implement the QFT and the fanout gate in systems that are constrained by a
linear light cone. This allows us to prove an asymptotically tighter lower
bound for long-range systems than is possible with previously available
techniques.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Hybrid Quantum-Classical Scheduling for Accelerating Neural Network Training with Newton's Gradient Descent [37.59299233291882]
We propose Q-Newton, a hybrid quantum-classical scheduler for accelerating neural network training with Newton's GD.
Q-Newton utilizes a streamlined scheduling module that coordinates between quantum and classical linear solvers.
Our evaluation showcases the potential for Q-Newton to significantly reduce the total training time compared to commonly used quantum machines.
arXiv Detail & Related papers (2024-04-30T23:55:03Z) - Linear gate bounds against natural functions for position-verification [0.0]
A quantum position-verification scheme attempts to verify the spatial location of a prover.
We consider two well-studied position-verification schemes known as $f$-routing and $f$-BB84.
arXiv Detail & Related papers (2024-02-28T19:00:10Z) - Efficient implementation of discrete-time quantum walks on quantum computers [0.0]
We propose an efficient and scalable quantum circuit implementing the discrete-time quantum walk (DTQW) model.
For $t$ time-steps of the DTQW, the proposed circuit requires only $O(n2 + nt)$ two-qubit gates compared to the $O(n2 t)$ of the current most efficient implementation.
arXiv Detail & Related papers (2024-02-02T19:11:41Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Improving fidelity of multi-qubit gates using hardware-level pulse
parallelization [0.0]
We present the parallelization of pre-calibrated pulses at the hardware level as an easy-to-implement strategy to optimize quantum gates.
We show that such parallelization leads to improved fidelity and gate time reduction, when compared to serial concatenation.
arXiv Detail & Related papers (2023-12-20T19:00:02Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Quantum State Preparation with Optimal Circuit Depth: Implementations
and Applications [10.436969366019015]
We show that any $Theta(n)$-depth circuit can be prepared with a $Theta(log(nd)) with $O(ndlog d)$ ancillary qubits.
We discuss applications of the results in different quantum computing tasks, such as Hamiltonian simulation, solving linear systems of equations, and realizing quantum random access memories.
arXiv Detail & Related papers (2022-01-27T13:16:30Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.