Towards large-scale quantum optimization solvers with few qubits
- URL: http://arxiv.org/abs/2401.09421v2
- Date: Mon, 25 Mar 2024 19:43:00 GMT
- Title: Towards large-scale quantum optimization solvers with few qubits
- Authors: Marco Sciorilli, Lucas Borges, Taylor L. Patti, Diego García-Martín, Giancarlo Camilo, Anima Anandkumar, Leandro Aolita,
- Abstract summary: We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
- Score: 59.63282173947468
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a variational quantum solver for combinatorial optimizations over $m=\mathcal{O}(n^k)$ binary variables using only $n$ qubits, with tunable $k>1$. The number of parameters and circuit depth display mild linear and sublinear scalings in $m$, respectively. Moreover, we analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature. This leads to unprecedented quantum-solver performances. For $m=7000$, numerical simulations produce solutions competitive in quality with state-of-the-art classical solvers. In turn, for $m=2000$, an experiment with $n=17$ trapped-ion qubits featured MaxCut approximation ratios estimated to be beyond the hardness threshold $0.941$. To our knowledge, this is the highest quality attained experimentally on such sizes. Our findings offer a novel heuristics for quantum-inspired solvers as well as a promising route towards solving commercially-relevant problems on near term quantum devices.
Related papers
- High-Entanglement Capabilities for Variational Quantum Algorithms: The Poisson Equation Case [0.07366405857677226]
This research attempts to resolve problems by utilizing the IonQ Aria quantum computer capabilities.
We propose a decomposition of the discretized equation matrix (DPEM) based on 2- or 3-qubit entanglement gates and is shown to have $O(1)$ terms with respect to system size.
We also introduce the Globally-Entangling Ansatz which reduces the parameter space of the quantum ansatz while maintaining enough expressibility to find the solution.
arXiv Detail & Related papers (2024-06-14T16:16:50Z) - Scaling Whole-Chip QAOA for Higher-Order Ising Spin Glass Models on Heavy-Hex Graphs [1.0765359420035392]
We show that the Quantum Approximate Optimization Algorithm (QAOA) for higher-order, random-coefficient, heavy-hex compatible spin glass Ising models has strong parameter concentration across problem sizes.
We show that the best quantum processors generally find lower energy solutions up to $p=3$ for 27 qubit systems and up to $p=2$ for 127 qubit systems.
arXiv Detail & Related papers (2023-12-02T01:47:05Z) - Simulation of IBM's kicked Ising experiment with Projected Entangled
Pair Operator [71.10376783074766]
We perform classical simulations of the 127-qubit kicked Ising model, which was recently emulated using a quantum circuit with error mitigation.
Our approach is based on the projected entangled pair operator (PEPO) in the Heisenberg picture.
We develop a Clifford expansion theory to compute exact expectation values and use them to evaluate algorithms.
arXiv Detail & Related papers (2023-08-06T10:24:23Z) - Alleviating the quantum Big-$M$ problem [0.237499051649312]
Classically known as the "Big-$M$" problem, it affects the physical energy scale.
We take a systematic, encompassing look at the quantum big-$M$ problem, revealing NP-hardness in finding the optimal $M$.
We propose a practical translation algorithm, based on SDP relaxation, that outperforms previous methods in numerical benchmarks.
arXiv Detail & Related papers (2023-07-19T18:00:05Z) - The Quantum Approximate Optimization Algorithm performance with low
entanglement and high circuit depth [0.0]
Variational quantum algorithms constitute one of the most widespread methods for using current noisy quantum computers.
We investigate entanglement's role in these methods for solving optimization problems.
We conclude that entanglement plays a minor role in the MaxCut and Exact Cover 3 problems studied here.
arXiv Detail & Related papers (2022-07-07T16:21:36Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
Quantum approximate optimization algorithms (QAOAs) utilize the power of quantum machines and inherit the spirit of adiabatic evolution.
We propose QAOA-in-QAOA ($textQAOA2$) to solve arbitrary large-scale MaxCut problems using quantum machines.
Our method can be seamlessly embedded into other advanced strategies to enhance the capability of QAOAs in large-scale optimization problems.
arXiv Detail & Related papers (2022-05-24T03:49:10Z) - Halving the cost of quantum multiplexed rotations [0.0]
We improve the number of $T$ gates needed for a $b$-bit approximation of a multiplexed quantum gate with $c$ controls.
Our results roughly halve the cost of state-of-art electronic structure simulations based on qubitization of double-factorized or tensor-hypercontracted representations.
arXiv Detail & Related papers (2021-10-26T06:49:44Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.