The appearance of particle tracks in detectors
- URL: http://arxiv.org/abs/2007.00785v1
- Date: Wed, 1 Jul 2020 22:08:28 GMT
- Title: The appearance of particle tracks in detectors
- Authors: Miguel Ballesteros, Tristan Benoist, Martin Fraas, J\"urg Fr\"ohlich
- Abstract summary: A quantum particle propagating in a detector, such as a Wilson cloud chamber, leaves a track close to a classical trajectory.
We introduce an idealized quantum-mechanical model of a charged particle that is periodically illuminated by pulses of laser light.
We present a mathematically rigorous analysis of the appearance of particle tracks, assuming that the Hamiltonian of the particle is in the position- and momentum operators.
- Score: 15.69806651672675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The phenomenon that a quantum particle propagating in a detector, such as a
Wilson cloud chamber, leaves a track close to a classical trajectory is
analyzed. We introduce an idealized quantum-mechanical model of a charged
particle that is periodically illuminated by pulses of laser light resulting in
repeated indirect measurements of the approximate position of the particle. For
this model we present a mathematically rigorous analysis of the appearance of
particle tracks, assuming that the Hamiltonian of the particle is quadratic in
the position- and momentum operators, as for a freely moving particle or a
harmonic oscillator.
Related papers
- Particle detectors in superposition in de Sitter spacetime [0.0]
Cosmological particle creation is the phenomenon by which the expansion of spacetime results in the production of particles of a given quantum field in that spacetime.
We study this phenomenon by considering a multi-level quantum particle detector in de Sitter spacetime coupled to a massless real quantum scalar field.
The main novel result is that, due to the quantum nature of the superposition of trajectories, the state of the detector after interaction with the field is not only a mixture of the thermal states that would be expected from each individual static trajectory but rather exhibits additional coherences due to interferences between the different trajectories.
arXiv Detail & Related papers (2024-03-04T14:45:33Z) - Oscillating Fields, Emergent Gravity and Particle Traps [55.2480439325792]
We study the large-scale dynamics of charged particles in a rapidly oscillating field and formulate its classical and quantum effective theory description.
Remarkably, the action models the effects of general relativity on the motion of nonrelativistic particles, with the values of the emergent curvature and speed of light determined by the field spatial distribution and frequency.
arXiv Detail & Related papers (2023-10-03T18:00:02Z) - On Repeated Measurements of a Quantum Particle in a Harmonic Potential [0.0]
We study evolution of a quantum particle in a harmonic potential whose position and momentum are repeatedly monitored.
We show how classical trajectories emerge in course of observation and study in detail dispersion of position and momentum of the particle.
arXiv Detail & Related papers (2023-06-14T08:18:38Z) - Intrinsic quantum dynamics of particles in brane gravity [0.0]
We show that the stability of particle trajectories on the brane gives us the Bohr--Sommerfeld quantization condition.
The particle's motion along the extra dimension allows us to formulate a geometrical version of the uncertainty principle.
We show that the particle's motion along the extra dimension yields a quantized energy spectrum for bound states.
arXiv Detail & Related papers (2023-03-20T13:41:07Z) - Continuous simultaneous measurement of position and momentum of a
particle [0.0]
We formulate a model of a quantum particle continuously monitored by detectors measuring simultaneously its position and momentum.
For sparsely distributed detectors, we use methods from renewal theory of processes to obtain some semi-analytic results.
For a semi-continuous spatial distribution of meters the emergence of classical trajectories is shown.
arXiv Detail & Related papers (2022-09-04T12:51:55Z) - Production of twisted particles in magnetic fields [62.997667081978825]
Quantum states suitable for a production of charged particles in a uniform magnetic field are determined.
Experiments allowing one successful discoveries of twisted positrons and positroniums are developed.
arXiv Detail & Related papers (2022-07-28T14:20:36Z) - The appearance of particle tracks in detectors -- II: the semi-classical
realm [0.0]
We show how symmetries, such as spherical symmetry, of the initial state of a particle are broken by tracks consisting of infinitely many approximately measured particle positions.
In the semi-classical regime, which is reached when one considers highly energetic particles, we present a detailed, mathematically rigorous analysis of this phenomenon.
arXiv Detail & Related papers (2022-02-19T09:23:23Z) - Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum [58.720142291102135]
We show traces of quantum friction in the degradation of the quantum coherence of a particle.
We propose to use the accumulated geometric phase acquired by a particle as a quantum friction sensor.
The experimentally viable scheme presented can spark renewed optimism for the detection of non-contact friction.
arXiv Detail & Related papers (2021-03-22T16:25:27Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Motion induced by asymmetric excitation of the quantum vacuum [62.997667081978825]
We study the effect of excitation of the quantum vacuum field induced by its coupling with a moving object.
In the present model, this excitation occurs asymmetrically on different sides of the object.
arXiv Detail & Related papers (2020-09-16T02:02:42Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.